Megakaryocytes are a rare population of cells that develop in the bone marrow and function to produce platelets that circulate throughout the body and form clots to stop or prevent bleeding. A major challenge in studying megakaryocyte development, and the diseases that arise from their dysfunction, is the identification, classification, and enrichment of megakaryocyte progenitor cells that are produced during hematopoiesis. Here, we present a high throughput strategy for identifying and isolating megakaryocytes and their progenitor cells from a heterogeneous population of bone marrow samples.
View Article and Find Full Text PDFOne of the significant challenges remaining in the field of drug delivery is insufficient targeting of diseased tissues or cells. While efforts to perform targeted drug delivery by engineered nanoparticles have shown some success, there are underlying targeting, toxicity, and immunogenicity challenges. By contrast, live cells usually have innate targeting mechanisms, and can be used as drug-delivery vehicles to increase the efficiency with which a drug accumulates to act on the intended tissue.
View Article and Find Full Text PDFThe in vitro production of platelets could provide a life-saving intervention for patients that would otherwise require donor-derived platelets. Producing large numbers of platelets in vitro from their progenitor cells, megakaryocytes, remains remarkably difficult and inefficient. Here, a human megakaryoblast leukemia cell line (MEG-01) was used to assess the maturation of megakaryocytes and to develop a new methodology for producing high numbers of platelet-like particles from mature MEG-01 cells in vitro.
View Article and Find Full Text PDF