Morphogenesis requires highly coordinated, complex interactions between cellular processes: proliferation, migration, and apoptosis, along with physical tissue interactions. How these cellular and tissue dynamics drive morphogenesis remains elusive. Three dimensional (3D) microscopic imaging poses great promise, and generates elegant images.
View Article and Find Full Text PDFPlacental abnormalities have been sporadically implicated as a source of developmental heart defects. Yet it remains unknown how often the placenta is at the root of congenital heart defects (CHDs), and what the cellular mechanisms are that underpin this connection. Here, we selected three mouse mutant lines, Atp11a, Smg9 and Ssr2, that presented with placental and heart defects in a recent phenotyping screen, resulting in embryonic lethality.
View Article and Find Full Text PDFA variety of genetic mutations affect cell proliferation during organism development, leading to structural birth defects. However, the mechanisms by which these alterations influence the development of the face remain unclear. Cell proliferation and its relation to shape variation can be studied using Light-Sheet Microscopy (LSM) imaging across a range of developmental time points using mouse models.
View Article and Find Full Text PDFComplex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses.
View Article and Find Full Text PDFFront Cell Dev Biol
March 2021
Canonical Wnt signaling plays multiple roles critical to normal craniofacial development while its dysregulation is known to be involved in structural birth defects of the face. However, when and how Wnt signaling influences phenotypic variation, including those associated with disease, remains unclear. One potential mechanism is via Wnt signaling's role in the patterning of an early facial signaling center, the frontonasal ectodermal zone (FEZ), and its subsequent regulation of early facial morphogenesis.
View Article and Find Full Text PDFCharacterising phenotypes often requires quantification of anatomical shape. Quantitative shape comparison (morphometrics) traditionally uses manually located landmarks and is limited by landmark number and operator accuracy. Here, we apply a landmark-free method to characterise the craniofacial skeletal phenotype of the Dp1Tyb mouse model of Down syndrome and a population of the Diversity Outbred (DO) mouse model, comparing it with a landmark-based approach.
View Article and Find Full Text PDFGeometric morphometrics is the statistical analysis of landmark-based shape variation and its covariation with other variables. Over the past two decades, the gold standard of landmark data acquisition has been manual detection by a single observer. This approach has proven accurate and reliable in small-scale investigations.
View Article and Find Full Text PDFIn an increasingly data-driven world, artificial intelligence is expected to be a key tool for converting big data into tangible benefits and the healthcare domain is no exception to this. Machine learning aims to identify complex patterns in multi-dimensional data and use these uncovered patterns to classify new unseen cases or make data-driven predictions. In recent years, deep neural networks have shown to be capable of producing results that considerably exceed those of conventional machine learning methods for various classification and regression tasks.
View Article and Find Full Text PDFBackground: Intravascular ultrasound (IVUS) provides axial grey-scale images of blood vessels. The large number of images require automatic analysis, specifically to identify the lumen and outer vessel wall. However, the high amount of noise, the presence of artifacts and anatomical structures, such as bifurcations, calcifications and fibrotic plaques, usually hinder the proper automatic segmentation of the vessel wall.
View Article and Find Full Text PDFReference intervals (RIs) of carotid intima media thickness (CIMT) from large healthy population are still lacking in Latin America. The aim of this study was to determine CIMT RIs in a cohort of 1012 healthy subjects from Argentina. We evaluated if RIs for males and females and for left and right carotids were necessary.
View Article and Find Full Text PDFIn low- and middle-income regions, a relatively large number of deaths occur from cardiovascular disease or stroke. Carotid intima-media thickness (cIMT) and carotid lumen diameter (cLD) are strong indicators of cardiovascular event risk and stenosis severity, respectively. The interactive open-source software described here, Cimtool, is based on active contours for measuring these indicators in clinical practice and thus helping in preventive diagnosis and treatment.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
August 2016
Background: Intravascular ultrasound (IVUS) provides axial greyscale images, allowing the assessment of the vessel wall and the surrounding tissues. Several studies have described automatic segmentation of the luminal boundary and the media-adventitia interface by means of different image features.
Purpose: The aim of the present study is to evaluate the capability of some of the most relevant state-of-the-art image features for segmenting IVUS images.