IEEE Trans Biomed Eng
September 2023
Objective: In this paper, we focus on the carrying out and validation of minimally invasive three-dimensional (3D) ultrasound (US) imaging of the auditory system, which is based on a new miniaturized endoscopic 2D US transducer.
Methods: This unique probe consists of a 18 MHz 24 elements curved array transducer with a distal diameter of 4 mm so it can be inserted into the external auditory canal. Typical acquisition is achieved by rotating such a transducer around its own axis using a robotic platform.
Introduction: There remains no standard imaging method that allows computer-assisted surgery of the cochlea in real time. However, recent evidence suggests that high-frequency ultrasound (HFUS) could permit real-time visualization of cochlear architecture. Registration with an imaging modality that suffers neither attenuation nor conical deformation could reveal useful anatomical landmarks to surgeons.
View Article and Find Full Text PDFCochlear implantation consists in electrically stimulating the auditory nerve by inserting an electrode array inside the cochlea, a bony structure of the inner ear. In the absence of any visual feedback, the insertion results in many cases of damages of the internal structures. This paper presents a feasibility study on intraoperative imaging and identification of cochlear structures with high-frequency ultrasound (HFUS).
View Article and Find Full Text PDF