Publications by authors named "Lucas J Fernandez-Alcazar"

Recent experimental developments in multimode nonlinear photonic circuits (MMNPCs), have motivated the development of an optical thermodynamic theory that describes the equilibrium properties of an initial beam excitation. However, a nonequilibrium transport theory for these systems, when they are in contact with thermal reservoirs, is still terra incognita. Here, by combining Landauer and kinematics formalisms we develop a universal one-parameter scaling theory that describes the whole transport behavior from the ballistic to the diffusive regime, including both positive and negative optical temperature scenarios.

View Article and Find Full Text PDF

By using Floquet driving protocols and interlacing them with a judicious reservoir emission engineering, we achieve extreme nonreciprocal thermal radiation. We show that the latter is rooted in an interplay between a direct radiation process occurring due to temperature bias between two thermal baths and the modulation process that is responsible for pumped radiation heat. Our theoretical results are confirmed via time-domain simulations with photonic and rf circuits.

View Article and Find Full Text PDF

In recent years, there has been an increasing interest in nanoelectromechanical devices, current-driven quantum machines, and the mechanical effects of electric currents on nanoscale conductors. Here, we carry out a thorough study of the current-induced forces and the electronic friction of systems whose electronic effective Hamiltonian can be described by an archetypal model, a single energy level coupled to two reservoirs. Our results can help better understand the general conditions that maximize the performance of different devices modeled as a quantum dot coupled to two electronic reservoirs.

View Article and Find Full Text PDF

Scattering processes are typically sensitive to the incident wave properties and to interference effects generated via wave-matter interactions with the target. We challenge this general belief in the case of targets that undergo time-periodic modulations encircling quasiadiabatically an exceptional point in a given parameter space. When the scattering dwell time is above a critical value τ_{c}, the scattered field is surprisingly insensitive to the properties of the incoming wave and local operational details of the driving.

View Article and Find Full Text PDF

We control the direction and magnitude of thermal radiation, between two bodies at equal temperature (in thermal equilibrium), by invoking the concept of adiabatic pumping. Specifically, within a resonant near-field electromagnetic heat transfer framework, we utilize an instantaneous scattering matrix approach to unveil the critical role of wave interference in radiative heat transfer. We find that appropriately designed adiabatic pumping cycling near diabolic singularities can dramatically enhance the efficiency of the directional energy transfer.

View Article and Find Full Text PDF

Decoherent transport in mesoscopic and nanoscopic systems can be formulated in terms of the D'Amato-Pastawski (DP) model. This generalizes the Landauer-Büttiker picture by considering a distribution of local decoherent processes. However, its generalization for multi-terminal set-ups is lacking.

View Article and Find Full Text PDF