Depending on functional groups, amphiphilic hexaamide macrocycles self-assemble into closed-shell and open-shell vesicles in polar solvents. In the presence of water, open-shell vesicles morph into closed-shell vesicles, whereas acidification of the medium transforms vesicles into nanotubes and fibers.
View Article and Find Full Text PDFThe recent emergence of anion-π interactions has added a new dimension to supramolecular chemistry of anions. Yet, after a decade since its inception, actual mechanisms of anion-π interactions remain highly debated. To elicit a complete and accurate understanding of how different anions interact with π-electron-deficient 1,4,5,8-naphthalenediimides (NDIs) under different conditions, we have extensively studied these interactions using powerful experimental techniques.
View Article and Find Full Text PDFAnion-induced electron transfer (ET) to π-electron-deficient naphthalenediimides (NDIs) can be channeled through two distinct pathways by adjusting the Lewis basicity of the anion and the π-acidity of the NDI: (1) When the anion and NDI are a strong electron donor and acceptor, respectively, positioning the HOMO of the anion above the LUMO of the NDI, a thermal anion → NDI ET pathway is turned ON. (2) When the HOMO of a weakly Lewis basic anion falls below the LUMO of an NDI but still lies above its HOMO, the thermal ET is turned OFF, but light can activate an unprecedented anion → (1)*NDI photoinduced ET pathway from the anion's HOMO to the photogenerated (1)*NDI's SOMO-1. Both pathways generate NDI(•-) radical anions.
View Article and Find Full Text PDF