Tree regeneration shapes forest carbon dynamics by determining long-term forest composition and structure, which suggests that threats to natural regeneration may diminish the capacity of forests to replace live tree carbon transferred to the atmosphere or other pools through tree mortality. Yet, the potential implications of tree regeneration patterns for future carbon dynamics have been sparsely studied. We used forest inventory plots to investigate whether the composition of existing tree regeneration is consistent with aboveground carbon stock loss, replacement, or gain for forests across the northeastern and midwestern USA, leveraging a recently developed method to predict the likelihood of sapling recruitment from seedling abundance tallied within six seedling height classes.
View Article and Find Full Text PDFThe climate simulation frontier of a global storm-resolving model (GSRM; or -scale model because of its kilometer-scale horizontal resolution) is deployed for climate change simulations. The climate sensitivity, effective radiative forcing, and relative humidity changes are assessed in multiyear atmospheric GSRM simulations with perturbed sea-surface temperatures and/or carbon dioxide concentrations. Our comparisons to conventional climate model results can build confidence in the existing climate models or highlight important areas for additional research.
View Article and Find Full Text PDFIncreasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots.
View Article and Find Full Text PDF