In the present work, we report an innovative approach for immunosensors construction. The experimental strategy is based on the anchoring of biological material at screen-printed carbon electrode (SPE) modified with electrodeposited Graphene Quantum Dots (GQD) and polyhydroxybutyric acid (PHB). It was used as functional substract basis for the recognition site receptor-binding domain (RBD) from coronavirus spike protein (SARS-CoV-2), for the detection of Anti-S antibodies (AbS).
View Article and Find Full Text PDFSimple, low-cost, and sensitive new platforms for electrochemical immunosensors for virus detection have been attracted attention due to the recent pandemic caused by a new type of coronavirus (SARS-CoV-2). In the present work, we report for the first time the construction of an immunosensor using a commercial 3D conductive filament of carbon black and polylactic acid (PLA) to detect Hantavirus Araucaria nucleoprotein (Np) as a proof-of-concept. The recognition biomolecule was anchored directly at the filament surface by using N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride and N-Hydroxysuccinimide (EDC/NHS).
View Article and Find Full Text PDF