Publications by authors named "Lucas Gerez"

Purpose Of Review: While wearable robotics is expanding within clinical settings, particularly for neurological rehabilitation, there is still a lack of consensus on how to effectively assess the performance of these devices. This review focuses on the most common metrics, whose selection and design are crucial for optimizing treatment outcomes and potentially improve the standard care.

Recent Findings: The literature reveals that while wearable robots are equipped with various embedded sensors, most studies still rely on traditional, nontechnological methods for assessment.

View Article and Find Full Text PDF

Plantarflexor central drive is a promising biomarker of neuromotor impairment; however, routine clinical assessment is hindered by the unavailability of force measurement systems with integrated neurostimulation capabilities. In this study, we evaluate the accuracy of a portable, neurostimulation-integrated, plantarflexor force measurement system we developed to facilitate the assessment of plantarflexor neuromotor function in clinical settings. Two experiments were conducted with the Central Drive System (CEDRS).

View Article and Find Full Text PDF

Continuous monitoring of muscle coordination can provide valuable information regarding an individual's performance during physical activities. For example, changes in muscle coordination can indicate muscle fatigue during exhaustive exercise or can be used to track the rehabilitation progress of patients post-injury. Traditional methods to evaluate coordination often focus solely on measuring muscle activation with electromyography, ignoring timing changes of the resultant force produced by the activated muscle.

View Article and Find Full Text PDF

Recent developments in soft wearable robots have shown promise for assistive and rehabilitative use-cases. For inflatable approaches, a major challenge in developing portable systems is finding a balance between portability, performance, and usability. In this paper, we present a textile-based robotic sleeve that can provide functional elbow flexion assistance and is compatible with a portable actuation unit (PAU).

View Article and Find Full Text PDF

Despite promising results in the rehabilitation field, it remains unclear whether upper limb robotic wearables, e.g., for people with physical impairments resulting from neurodegenerative disease, can be made portable and suitable for everyday use.

View Article and Find Full Text PDF

The force-generating capacity of skeletal muscle is an important metric in the evaluation and diagnosis of musculoskeletal health. Measuring changes in muscle force exertion is essential for tracking the progress of athletes during training, for evaluating patients' recovery after muscle injury, and also for assisting the diagnosis of conditions such as muscular dystrophy, multiple sclerosis, or Parkinson's disease. Traditional hardware for strength evaluation requires technical training for operation, generates discrete time points for muscle assessment, and is implemented in controlled settings.

View Article and Find Full Text PDF

Over the last decade underactuated, adaptive robot grippers and hands have received an increased interest from the robotics research community. This class of robotic end-effectors can be used in many different fields and scenarios with a very promising application being the development of prosthetic devices. Their suitability for the development of such devices is attributed to the utilization of underactuation that provides increased functionality and dexterity with reduced weight, cost, and control complexity.

View Article and Find Full Text PDF

Robot grasping in unstructured and dynamic environments is heavily dependent on the object attributes. Although Deep Learning approaches have delivered exceptional performance in robot perception, human perception and reasoning are still superior in processing novel object classes. Furthermore, training such models requires large, difficult to obtain datasets.

View Article and Find Full Text PDF

Traditionally, the robotic end-effectors that are employed in unstructured and dynamic environments are rigid and their operation requires sophisticated sensing elements and complicated control algorithms in order to handle and manipulate delicate and fragile objects. Over the last decade, considerable research effort has been put into the development of adaptive, under-actuated, soft robots that facilitate robust interactions with dynamic environments. In this paper, we present soft, retractable, pneumatically actuated, telescopic actuators that facilitate the efficient execution of stable grasps involving a plethora of everyday life objects.

View Article and Find Full Text PDF

Adaptive, tendon-driven and affordable prosthetic devices have received an increased interest over the last decades. Prosthetic devices range from body-powered solutions to fully actuated systems. Despite the significant progress in the field, most existing solutions are expensive, heavy, and bulky, or they cannot be used for partial hand amputations.

View Article and Find Full Text PDF

Soft, underactuated, and wearable robotic exo-gloves have received an increased interest over the last years. These devices can be used to improve the capabilities of healthy individuals or to assist people that suffer from neurological and musculoskeletal diseases. Despite the significant progress in the field, most existing solutions are still heavy and expensive, they require an external power source to operate, and they are not wearable.

View Article and Find Full Text PDF

Adaptive robot hands are typically created by introducing structural compliance either in their joints (e.g., implementation of flexures joints) or in their finger-pads.

View Article and Find Full Text PDF

Conventional knee-ankle-foot orthoses (KAFOs) are generally prescribed for children with lower limb muscle weakness and joint instabilities. The main function of KAFOs is to provide stability during gait by locking the knee in full extension. However, walking with the knee joint in a fully extended position requires excessive energy consumption, leading to early fatigue and inducing non-physiological gait patterns.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkcbsho5dg0jifkk4a9c003fpgh41t201): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once