The structural, electronic and magnetic properties of quasi-one-dimensional MoS nanowires, passivated by extra sulfur, have been determined using density-functional theory. The nanostructures were simulated using several different models based on experimental electron microscopy images. It is found that independently of the geometrical details and the coverage of extra sulfur at the Mo-edge, quasi-one-dimensional metallic states are predominant in all the low-energy model structures despite their reduced dimensionality.
View Article and Find Full Text PDFWe analyze the impact of the magnetic anisotropy on the geometric structure and magnetic ordering of small atomic clusters of palladium, iridium, platinum, and gold. We have employed a noncollinear implementation of density functional theory where the spin-orbit interaction has been included self-consistently. The size of the clusters ranges from two to five, six, or seven atoms, depending on the element.
View Article and Find Full Text PDF