Publications by authors named "Lucas F M Da Silva"

Three-dimensional printing is widely becoming prevalent in various industries, including the automotive sector. As this technology advances, critical structures subjected to impact loads may also be produced using additive manufacturing. A key parameter in this technique is the infill density of the printed geometry, which directly affects mechanical properties such as strength, stiffness, and ductility.

View Article and Find Full Text PDF

In response to heightened environmental awareness, various industries, including the civil and automotive sector, are contemplating a shift towards the utilization of more sustainable materials. For adhesive bonding, this necessitates the exploration of materials derived from renewable sources, commonly denoted as bio-adhesives. This study focuses on a bio-adhesive L-joint, which is a commonly employed configuration in the automotive sector for creating bonded structural components with significant bending stiffness.

View Article and Find Full Text PDF

This study focuses on the prediction of the fracture mechanics behaviour of a highly flexible adhesive (with a tensile elongation of 90%), since this type of adhesive is becoming widely used in automotive structures due to their high elongation at break and damping capacity. Despite their extensive applications, the understanding of their fracture mechanics behaviour under varying loading rates and temperatures remains limited in the literature. In addition, current prediction models are also unable to accurately predict their behaviour due to the complex failure mechanism that such bonded joints have.

View Article and Find Full Text PDF

While most academic studies focus on the properties of cured joints, this research addresses the manufacturing process of hybrid joints in their uncured state. Hybrid joints that combine adhesive bonding with pre-tensioned bolts exhibit superior mechanical performance compared to exclusively bonded or bolted joints. However, the adhesive flow during manufacturing in hybrid joints often results in a nonuniform adhesive thickness, where obtaining an exact thickness is crucial for accurate load capacity predictions.

View Article and Find Full Text PDF

The use of thin-ply composite materials has rapidly increased due to their tailorable mechanical properties and design flexibility. Considering an adhesively bonded composite joint, peel stress stands out as a key contributor leading to failure among other primary stress factors. Therefore, the reinforcement of carbon fiber-reinforced polymer (CFRP) laminates throughout the thickness could be considered as an approach to improve the joint strength.

View Article and Find Full Text PDF

This study experimentally investigates the influence of metal chips and glass fibers on the mode I fracture toughness, energy absorption, and tensile strength of polymer concretes (PCs) manufactured by waste aggregates. A substantial portion of the materials employed in manufacturing and enhancing the tested polymer concrete are sourced from waste material. To achieve this, semi-circular bend (SCB) samples were fabricated, both with and without a central crack, to analyze the strength and fracture behavior of the composite specimens.

View Article and Find Full Text PDF

Adhesive bonding has been increasingly employed in multiple industrial applications. This has led to a large industrial demand for faster, simpler, and cheaper characterization methods that allow engineers to predict the mechanical behavior of an adhesive with numerical models. Currently, these characterization processes feature a wide variety of distinct standards, specimen configurations, and testing procedures and require deep knowhow of complex data-reduction schemes.

View Article and Find Full Text PDF

Semiconductor advancements demand greater integrated circuit density, structural miniaturization, and complex material combinations, resulting in stress concentrations from property mismatches. This study investigates the failure in two types of interfaces found in chip packages: silicon-epoxy mold compound (EMC) and polyimide-EMC. These interfaces were subjected to quasi-static and fatigue loading conditions.

View Article and Find Full Text PDF

In contemporary engineering practices, the utilization of sustainable materials and eco-friendly techniques has gained significant importance. Wooden joints, particularly those created with polyurethan-based bio-adhesives, have garnered significant attention owing to their intrinsic environmental advantages and desirable mechanical properties. In comparison to conventional joining methods, adhesive joints offer distinct benefits such as an enhanced load distribution, reduced stress concentration, and improved aesthetic appeal.

View Article and Find Full Text PDF

Examining crack propagation at the interface of bimaterial components under various conditions is essential for improving the reliability of semiconductor designs. However, the fracture behavior of bimaterial interfaces has been relatively underexplored in the literature, particularly in terms of numerical predictions. Numerical simulations offer vital insights into the evolution of interfacial damage and stress distribution in wafers, showcasing their dependence on material properties.

View Article and Find Full Text PDF

Objectives:  Maxillary lateral incisor agenesis (MLIA), treated orthodontically by space opening, requires complimentary aesthetic rehabilitation. Resin-bonded bridges (RBBs) can be equated as interim rehabilitation until skeletal maturity is achieved to place an implant-supported crown or as definitive rehabilitation in case of financial restrictions or implant contraindications. Scientific evidence of the best material must be confirmed in specific clinical situations.

View Article and Find Full Text PDF

This study investigates the mixed-mode I/II fracture behavior of O-notched diagonally loaded square plate (DLSP) samples containing an edge crack within the O-notch. This investigation aims to explore the combined effects of loading rate and mode mixity on the fracture properties of steel 304L, utilizing DLSP samples. The DLSP samples, made from strain-hardening steel 304L, were tested at three different loading rates: 1, 50, and 400 mm/min, covering five mode mixities from pure mode I to pure mode II.

View Article and Find Full Text PDF

The use of adhesive bonding in diverse industries such as the automotive and aerospace sectors has grown considerably. In structural construction, adhesive joints provide a unique combination of low structural weight, high strength and stiffness, combined with a relatively simple and easily automated manufacturing method, characteristics that are ideal for the development of modern and highly efficient vehicles. In these applications, ensuring that the failure mode of a bonded joint is cohesive rather than adhesive is important since this failure mode is more controlled and easier to model and to predict.

View Article and Find Full Text PDF

The need for more sustainable adhesive formulations has led to the use of silane-based adhesives in different industrial sectors, such as the automotive industry. In this work, the mechanical properties of a dual cure two-component prototype adhesive which combined silylated polyurethane resin (SPUR) with standard epoxy resin was characterized under quasi-static conditions. The characterization process consisted of tensile bulk testing, to determine the Young's modulus, the tensile strength and the tensile strain to failure.

View Article and Find Full Text PDF

This study investigates a sustainable alternative for composites and adhesives in high-performance industries like civil and automotive. This study pioneers the development and application of a new methodology to characterize a bio-based, zero-thickness adhesive. This method facilitates precise measurements of the adhesive's strength and fracture properties under zero-thickness conditions.

View Article and Find Full Text PDF

The need for more sustainable adhesive formulations has presented the possibility of using silane-based adhesives in the automotive industry. In this work, a dual-cure two-component silylated polyurethane resin (SPUR) adhesive was tested in single-lap joints, to assess in-joint behaviour at room temperature under quasi-static conditions for aluminium substrates. The effect of two different overlap lengths, 25 and 50 mm, was also considered.

View Article and Find Full Text PDF

Adhesive bonding is widely seen as the most optimal method for joining composite materials, bringing significant benefits over mechanical joining, such as lower weight and reduced stress concentrations. Adhesively bonded composite joints find extensive applications where cyclic fatigue loading takes place, but this might ultimately lead to crack damage and safety issues. Consequently, it has become essential to study how these structures behave under fatigue loads and identify the remaining gaps in knowledge to give insights into new possibilities.

View Article and Find Full Text PDF

The adhesion of pressure-sensitive adhesives (PSAs) is a complex phenomenon that can be understood through the characterization of different properties, including viscoelastic, mechanical, and fracture properties. The aim of the present paper is to determine the viscoelastic behaviour of an acrylic PSA and place it in the viscoelastic window, as well as to determine the tensile strength of the material. Additionally, different numbers of stacked adhesive layers and two crosshead speeds were applied to characterize the tensile strength of the adhesive in the different conditions.

View Article and Find Full Text PDF

The investigation of the behaviour of adhesive joints under high strain rates is an active area of research, primarily due to the widespread use of adhesives in various industries, including automotive manufacturing. Understanding how adhesives perform when subjected to high strain rates is crucial for designing vehicle structures. Additionally, it is particularly important to comprehend the behaviour of adhesive joints when exposed to elevated temperatures.

View Article and Find Full Text PDF

It has been demonstrated that a possible solution to reducing delamination in a unidirectional composite laminate lies in the replacement of conventional carbon-fibre-reinforced polymer layers with optimized thin-ply layers, thus creating hybrid laminates. This leads to an increase in the transverse tensile strength of the hybrid composite laminate. This study investigates the performance of a hybrid composite laminate reinforced by thin plies used as adherends in bonded single lap joints.

View Article and Find Full Text PDF

Self-adhesive resin cements (SARCs) are used because of their mechanical properties, ease of cementation protocols, and lack of requirements for acid conditioning or adhesive systems. SARCs are generally dual-cured, photoactivated, and self-cured, with a slight increase in acidic pH, allowing self-adhesiveness and increasing resistance to hydrolysis. This systematic review assessed the adhesive strength of SARC systems luted to different substrates and computer-aided design and manufacturing (CAD/CAM) ceramic blocks.

View Article and Find Full Text PDF

Adhesives are increasingly being employed in industrial applications as a replacement for traditional mechanical joining methods, since they enable improvements in the strength-to-weight ratio and lower the cost of the overall structures. This has led to a need for adhesive mechanical characterisation techniques that can provide the data needed to build advanced numerical models, allowing structural designers to expedite the adhesive selection process and grant precise optimisation of bonded connection performance. However, mechanically mapping the behaviour of an adhesive involves numerous different standards resulting in a complex network of various specimens, testing procedures and data reduction methods that concern techniques which are exceedingly complex, time-consuming, and expensive.

View Article and Find Full Text PDF

In the present paper, an exploratory study on the creep behavior of a pressure sensitive adhesive (PSA) is performed. After the determination of the quasi-static behavior of the adhesive for bulk specimens and single lap joints (SLJ), SLJs were subjected to creep tests at 80%, 60%, and 30% of their respective failure load. It was verified that the durability of the joints increases under static creep conditions as the load level decreases, with the second phase of the creep curve becoming more pronounced, where the strain rate is close to zero.

View Article and Find Full Text PDF

In this study, the effect of through-the-thickness delamination plane position on the R-curve behavior of end-notch-flexure (ENF) specimens was investigated using experimental and numerical procedures. From the experimental point of view, plain-woven E-glass/epoxy ENF specimens with two different delamination planes, i.e.

View Article and Find Full Text PDF

Currently, few experimental methods exist that enable the mechanical characterization of adhesives under high strain rates. One such method is the Split Hopkinson Bar (SHB) test. The mechanical characterization of adhesives is performed using different specimen configurations, such as Single Lap Joint (SLJ) specimens.

View Article and Find Full Text PDF