Publications by authors named "Lucas E Souza"

Mesenchymal stem cells (MSCs) were initially identified as progenitors of skeletal tissues within mammalian bone marrow and cells with similar properties were also obtained from other tissues such as adipose and dental pulp. Although MSCs have been extensively investigated, their native behavior and in vivo identity remain poorly defined. Uncovering the in vivo identity of MSCs has been challenging due to the lack of exclusive cell markers, cellular alterations caused by culture methods, and extensive focus on in vitro properties for characterization.

View Article and Find Full Text PDF

Survivors from sepsis are in an immunosuppressed state that is associated with higher long-term mortality and risk of opportunistic infections. Whether these factors contribute to neoplastic proliferation, however, remains unclear. Tumor-associated macrophages (TAM) can support malignant cell proliferation, survival, and angiogenesis.

View Article and Find Full Text PDF

The discovery that the regenerative properties of bone marrow multipotent mesenchymal stromal cells (BM-MSCs) could collaterally favor neoplastic progression has led to a great interest in the function of these cells in tumors. However, the effect of BM-MSCs on colonization, a rate-limiting step of the metastatic cascade, is unknown. In this study, we investigated the effect of BM-MSCs on metastatic outgrowth of B16-F10 melanoma cells.

View Article and Find Full Text PDF

Hemolysis and consequent release of cell-free hemoglobin (CFHb) impair vascular nitric oxide (NO) bioavailability and cause oxidative and inflammatory processes. Hydroxyurea (HU), a common therapy for sickle cell disease (SCD), induces fetal Hb production and can act as an NO donor. We evaluated the acute inflammatory effects of intravenous water-induced hemolysis in C57BL/6 mice and determined the abilities of an NO donor, diethylamine NONOate (DEANO), and a single dose of HU to modulate this inflammation.

View Article and Find Full Text PDF

Introduction: Mesenchymal stromal/stem cells (MSCs) are multipotent cells that have the ability to express and secrete a wide range of immunomodulatory molecules, cytokines, growth factors and antiapoptotic proteins. MSCs modulate both innate and adaptive immune responses making them potential candidates for the treatment of patients with type 1 diabetes mellitus (T1D). However, one problem frequently associated with the systemic MSCs administration is the entrapment of the cells mainly in the lungs.

View Article and Find Full Text PDF