Publications by authors named "Lucas Celeri"

The problem of formulating thermodynamics in a relativistic scenario remains unresolved, although many proposals exist in the literature. The challenge arises due to the intrinsic dynamic structure of spacetime as established by the general theory of relativity. With the discovery of the physical nature of information, which underpins Landauer's principle, we believe that information theory should play a role in understanding this problem.

View Article and Find Full Text PDF

The universality of classical thermodynamics rests on the central limit theorem, due to which, measurements of thermal fluctuations are unable to reveal detailed information regarding the microscopic structure of a macroscopic body. When small systems are considered and fluctuations become important, thermodynamic quantities can be understood in the context of classical stochastic mechanics. A fundamental assumption behind thermodynamics is therefore that of coarse graining, which stems from a substantial lack of control over all degrees of freedom.

View Article and Find Full Text PDF

Information theory has become an increasingly important research field to better understand quantum mechanics. Noteworthy, it covers both foundational and applied perspectives, also offering a common technical language to study a variety of research areas. Remarkably, one of the key information-theoretic quantities is given by the relative entropy, which quantifies how difficult is to tell apart two probability distributions, or even two quantum states.

View Article and Find Full Text PDF

A quantum memristor is a passive resistive circuit element with memory, engineered in a given quantum platform. It can be represented by a quantum system coupled to a dissipative environment, in which a system-bath coupling is mediated through a weak measurement scheme and classical feedback on the system. In quantum photonics, such a device can be designed from a beam splitter with tunable reflectivity, which is modified depending on the results of measurements in one of the outgoing beams.

View Article and Find Full Text PDF

In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state, and on how some external parameter is changed during the coherent process.

View Article and Find Full Text PDF

Can collective quantum effects make a difference in a meaningful thermodynamic operation? Focusing on energy storage and batteries, we demonstrate that quantum mechanics can lead to an enhancement in the amount of work deposited per unit time, i.e., the charging power, when N batteries are charged collectively.

View Article and Find Full Text PDF

Connections between information theory and thermodynamics have proven to be very useful to establish bounding limits for physical processes. Ideas such as Landauer's erasure principle and information-assisted work extraction have greatly contributed not only to broadening our understanding about the fundamental limits imposed by nature, but also paving the way for practical implementations of information-processing devices. The intricate information-thermodynamics relation also entails a fundamental limit on parameter estimation, establishing a thermodynamic cost for information acquisition.

View Article and Find Full Text PDF