The hydrogenation of -substituted vinylphosphonates using rhodium complexes derived from P-OP ligands , -, or as catalysts has been successfully accomplished, achieving very high levels of stereoselectivity (up to 99% ee or de). The described synthetic strategy allowed for the efficient preparation of α-aminophosphonic acid derivatives and phosphonopeptides, which are valuable building blocks for the preparation of biologically relevant molecules.
View Article and Find Full Text PDFKey findings regarding the effects of ligand preorganisation via halogen bonding on the outcome of reactions at rhodium are reported. An unprecedented halogen bonding-mediated oxidative addition of CAr-I bonds to rhodium with efficient formation of cyclometallated species deserves special mention.
View Article and Find Full Text PDFThe use of halogen bonding as a tool to construct a catalyst backbone is reported. Specifically, pyridyl- and iodotetrafluoroaryl-substituted phosphines were assembled in the presence of a rhodium(i) precursor to form the corresponding halogen-bonded complex . The presence of fluorine substituents at the iodo-containing supramolecular motif was not necessary for halogen bonding to occur due to the template effect exerted by the rhodium center during formation of the halogen-bonded complex.
View Article and Find Full Text PDFAccess to basic drugs is a major issue in developing countries. Chagas disease caused by Trypanosoma cruzi is a paradigmatic example of a chronic disease without an effective treatment. Current treatments based on benznidazole and nifurtimox are expensive, ineffective, and toxic.
View Article and Find Full Text PDF