Publications by authors named "Lucas C Silva"

The present study aimed to verify the effect of acute nitrate supplementation on oxidative, phosphocreatine, and glycolytic energy contribution (C, C, and C respectively) during a high-intensity intermittent exercise (HIIE). Fifteen physically active subjects were submitted to incremental running test on a treadmill and two random HIIE (10 × 1 min at maximal aerobic speed with 1 min of passive recovery) in the following conditions: sodium nitrate (SN) or Placebo (PL). Repeated measure ANOVA was used to compare C, and C within the 10 efforts.

View Article and Find Full Text PDF

Biomolecular condensates are dynamic liquid droplets through intracellular liquid-liquid phase separation that function as membraneless organelles, which are highly involved in various complex cellular processes and functions. Artificial analogs formed via similar pathways that can be integrated with biological complexity and advanced functions have received tremendous research interest in the field of synthetic biology. The coacervate droplet-based compartments can partition and concentrate a wide range of solutes, which are regarded as attractive candidates for mimicking phase-separation behaviors and biophysical features of biomolecular condensates.

View Article and Find Full Text PDF

Pequi oil is extracted from the fruit of a Brazilian native plant (Caryocar brasiliense Camb) that contains some molecules with anticancer potential. Due to its hydrophobic property, the administration of pequi oil associated with nanoemulsion systems represents a successful strategy to improve oil bioavailability. Breast cancer is the most frequent type of cancer among women and conventional therapies used are frequently associated with several side effects.

View Article and Find Full Text PDF

Giant polymersomes are versatile and stable biomimetic compartments that are ideal for building cell-like systems. However, the transport of hydrophilic molecules across the membrane, which controls the function of cell-like systems, is limited by the low permeability of polymeric bilayers. Therefore, mechanisms to control the permeability of polymersomes are necessary to create functional cell-like systems.

View Article and Find Full Text PDF

Bottom-up synthetic biology is the science of building systems that mimic the structure and function of living cells from scratch. To do this, researchers combine tools from chemistry, materials science, and biochemistry to develop functional and structural building blocks to construct synthetic cell-like systems. The many strategies and materials that have been developed in recent decades have enabled scientists to engineer synthetic cells and organelles that mimic the essential functions and behaviors of natural cells.

View Article and Find Full Text PDF

The airflow restriction mask (ARM) is a practical and inexpensive device for respiratory muscle training. Wearing an ARM has recently been combined with high-intensity interval exercise (HIIE), but its effect on neuromuscular fatigue is unknown. The present study investigated the effects of ARM wearing on neuromuscular fatigue after an HIIE session.

View Article and Find Full Text PDF

Background: Tuberculosis is a curable disease, which remains the leading cause of death among infectious diseases worldwide, and it is the leading cause of death in people living with HIV. The purpose is to examine survival and predictors of death in Tuberculosis/HIV coinfection cases from 2009 to 2013.

Methods: We estimated the survival of 2,417 TB/HIV coinfection cases in Porto Alegre, from diagnosis up to 85 months of follow-up.

View Article and Find Full Text PDF

Contemporary biological cells are sophisticated and highly compartmentalized. Compartmentalization is an essential principle of prebiotic life as well as a key feature in bottom-up synthetic biology research. In this review, the dynamic growth of compartments as an essential prerequisite for enabling self-reproduction as a fundamental life process is discussed.

View Article and Find Full Text PDF

This work investigates the application of extreme learning machine, a fast training neural network model, for an ultrasound nondestructive evaluation decision support system. A novel segmented analysis of time-of-flight diffraction ultrasound signals is proposed in order to produce high flaw detection efficiency and low computational requirements, making it possible to be used in embedded applications. The frequency contents of TOFD signals temporal segments, estimated using the discrete Fourier transform, were used to feed the classification system.

View Article and Find Full Text PDF
Article Synopsis
  • TB/HIV coinfection is a significant public health concern in Brazil, impacting patients' treatment adherence; Directly Observed Treatment (DOT) is recommended due to this vulnerability.
  • A study conducted on TB/HIV patients in Porto Alegre from 2009 to 2013 revealed that only 16.9% received DOT, with various factors influencing its implementation, such as race, prior treatment outcomes, and social issues.
  • The results showed a stark difference in mortality rates, with only 10.2% of deaths occurring in those who received DOT, highlighting its potential effectiveness in improving patient outcomes.
View Article and Find Full Text PDF

The reduction of CO with visible light is a highly sustainable method for producing valuable chemicals. The function-led design of organic conjugated semiconductors with more chemical variety than that of inorganic semiconductors has emerged as a method for achieving carbon photofixation chemistry. Here, we report the molecular engineering of triazine-based conjugated microporous polymers to capture, activate and reduce CO to CO with visible light.

View Article and Find Full Text PDF

Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution.

View Article and Find Full Text PDF

The junction dynamics in a selectively deuterated model polymer network containing junctions on every 21st chain carbon is studied by solid state (2) H echo NMR. Polymer networks are prepared via acyclic triene metathesis of deuteron-labeled symmetric trienes with deuteron probes precisely placed at the alpha carbon relative to the junction point. The effect of decreasing the cross-link density on the junction dynamics is studied by introduction of polybutadiene chains in-between junctions.

View Article and Find Full Text PDF

Recent observations across a 14-year restoration chronosequence have shown an unexpected accumulation of soil organic carbon in strip-mined areas of central Brazil. This was attributed to the rapid plant colonization that followed the incorporation of biosolids into exposed regoliths, but the specific mechanisms involved in the stabilization of carbon inputs from the vegetation remained unclear. Using isotopic and elemental analyses, we tested the hypothesis that plant-derived carbon accumulation was triggered by the formation of iron-coordinated complexes, stabilized into physically protected (occluded) soil fractions.

View Article and Find Full Text PDF

The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation.

View Article and Find Full Text PDF

Coastal redwood (Sequoia sempervirens), the world's tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, exploring potential flow mechanisms and biological significance. Using isotopic labelling and microCT imaging, we observed that water entered the xylem via bark and reduced tracheid embolization.

View Article and Find Full Text PDF

Current global challenges require solutions that cannot be delivered by any one field alone. New developments in the analysis and interpretation of plant-derived climatic records bridge traditional disciplines, advancing understanding of phenomena of great ecological and societal significance, specifically, those related to changes in the terrestrial water cycle.

View Article and Find Full Text PDF

Opencast mining causes severe impacts on natural environments, often resulting in permanent damage to soils and vegetation. In the present study we use a 14-year restoration chronosequence to investigate how resource input and spontaneous plant colonization promote the revegetation and reconstruction of mined soils in central Brazil. Using a multi-proxy approach, combining vegetation surveys with the analysis of plant and soil isotopic abundances (delta13C and delta15N) and chemical and physical fractionation of organic matter in soil profiles, we show that: (1) after several decades without vegetation cover, the input of nutrient-rich biosolids into exposed regoliths prompted the establishment of a diverse plant community (> 30 species); (2) the synergistic effect of resource input and plant colonization yielded unprecedented increases in soil carbon, accumulating as chemically stable compounds in occluded physical fractions and reaching much higher levels than observed in undisturbed ecosystems; and (3) invasive grasses progressively excluded native species, limiting nutrient availability, but contributing more than 65% of the total accumulated soil organic carbon.

View Article and Find Full Text PDF

Common management practices, such as the application of green waste compost, soil moisture manipulation, and nitrogen fertilization, affect nitrous oxide (NO) emissions from agricultural soils. To expand our understanding of how soils interact with these controls, we studied their effects in 10 agricultural soils. Application of compost slightly increased NO emissions in soils with low initial levels of inorganic N and low background emission.

View Article and Find Full Text PDF

In response to rising interest over the years, many experiments and several models have been devised to understand emission of nitrous oxide (N2O) from agricultural soils. Notably absent from almost all of this discussion is iron, even though its role in both chemical and biochemical reactions that generate N2O was recognized well before research on N2O emission began to accelerate. We revisited iron by exploring its importance alongside other soil properties commonly believed to control N2O production in agricultural systems.

View Article and Find Full Text PDF

Human-induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low-latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high-elevation forests of central Mexico.

View Article and Find Full Text PDF

Studies have shown that pyrolysis method and temperature are the key factors influencing biochar chemical and physical properties; however, information on the nature of biochar feedstocks is more accessible to consumers, making feedstock a better measure for selecting biochars. This study characterizes physical and chemical properties of commercially available biochars and investigates trends in biochar properties related to feedstock material to develop guidelines for biochar use. Twelve biochars were analyzed for physical and chemical properties.

View Article and Find Full Text PDF