Publications by authors named "Lucas C Majure"

The formation of the western North American drylands has led to the evolution of an astounding diversity of species well adapted for such communities. Complex historical patterns often underlie the modern distribution of the flora and fauna of these areas. We investigated the biogeography of a group of desert-adapted prickly pears, known as the Xerocarpa clade, from western North America.

View Article and Find Full Text PDF

Background: Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region.

View Article and Find Full Text PDF

Premise: The Cactaceae of northwestern Mexico and the southwestern United States constitute a major component of the angiosperm biodiversity of the region. The Mammilloid clade, (Cactaceae, tribe Cacteae), composed of the genera Cochemiea, Coryphantha, Cumarinia, Mammillaria, and Pelecyphora is especially species rich. We sought to understand the timing, geographical and climate influences correlated with expansion of the Mammilloid clade, through the Sonoran Desert into Baja California.

View Article and Find Full Text PDF

Relationships within the major clades of Cactaceae are relatively well known based on DNA sequence data mostly from the chloroplast genome. Nevertheless, some nodes along the backbone of the phylogeny, and especially generic and species-level relationships, remain poorly resolved and are in need of more informative genetic markers. In this study, we propose a new approach to solve the relationships within Cactaceae, applying a targeted sequence capture pipeline.

View Article and Find Full Text PDF

Viral metagenomic studies have enabled the discovery of many unknown viruses and revealed that viral communities are much more diverse and ubiquitous than previously thought. Some viruses have multiple genome components that are encapsidated either in separate virions (multipartite viruses) or in the same virion (segmented viruses). In this study, we identify what is possibly a novel bipartite plant-associated circular single-stranded DNA virus in a wild prickly pear cactus, , that is endemic to the Chaco ecoregion in South America.

View Article and Find Full Text PDF

Yucca in the American desert Southwest typically flowers in early spring, but a well-documented anomalous bloom event occurred during an unusually cold and wet late fall and early winter 2018-2019. We used community science photographs to generate flowering presence and absence data. We fit phenoclimatic models to determine which climate variables are explanatory for normal flowering, and then we tested if the same conditions that drive normal blooming also drove the anomalous blooming event.

View Article and Find Full Text PDF

Geminiviruses are a group of plant-infecting viruses with single-stranded DNA genomes. Within this family, viruses in the genus are known to have a worldwide distribution causing a range of severe diseases in a multitude of dicotyledonous plant species. Begomoviruses are transmitted by the whitefly and their ssDNA genomes can be either monopartite or bipartite.

View Article and Find Full Text PDF

The family Cactaceae comprises a diverse group of typically succulent plants that are native to the American continent but have been introduced to nearly all other continents, predominantly for ornamental purposes. Despite their economic, cultural, and ecological importance, very little research has been conducted on the viral community that infects them. We previously identified a highly divergent geminivirus that is the first known to infect cacti.

View Article and Find Full Text PDF

Premise: The Caribbean islands are in the top five biodiversity hotspots on the planet; however, the biogeographic history of the seasonally dry tropical forest (SDTF) there is poorly studied. Consolea consists of nine species of dioecious, hummingbird-pollinated tree cacti endemic to the West Indies, which form a conspicuous element of the SDTF. Several species are threatened by anthropogenic disturbance, disease, sea-level rise, and invasive species and are of conservation concern.

View Article and Find Full Text PDF

The Antillean genus represents an radiation among the Greater and Lesser Antilles of 19 currently recognized species. Extensive fieldwork carried out in the Dominican Republic over recent years has revealed that the species limits of of Hispaniola are more complex than previously thought. There are four currently recognized species that occur on the island, , , and .

View Article and Find Full Text PDF

Genomoviruses (family Genomoviridae) are circular single-stranded DNA viruses that have been mainly identified through metagenomics studies in a wide variety of samples from various environments. Here, we describe 98 genomes of genomoviruses found associated with members of 19 plant families from Australia, Brazil, France, South Africa and the USA. These 98 genomoviruses represent 29 species, 26 of which are new, in the genera Gemykolovirus (n = 37), Gemyduguivirus (n = 9), Gemygorvirus (n = 8), Gemykroznavirus (n = 6), Gemycircularvirus (n = 21) and Gemykibivirus (n = 17).

View Article and Find Full Text PDF

Chloroplast genomes (plastomes) are frequently treated as highly conserved among land plants. However, many lineages of vascular plants have experienced extensive structural rearrangements, including inversions and modifications to the size and content of genes. Cacti are one of these lineages, containing the smallest plastome known for an obligately photosynthetic angiosperm, including the loss of one copy of the inverted repeat (∼25 kb) and the gene suite, but only a few cacti from the subfamily Cactoideae have been sufficiently characterized.

View Article and Find Full Text PDF

Cactaceae comprise a diverse and iconic group of flowering plants which are almost exclusively indigenous to the New World. The wide variety of growth forms found amongst the cacti have led to the trafficking of many species throughout the world as ornamentals. Despite the evolution and physiological properties of these plants having been extensively studied, little research has focused on cactus-associated viral communities.

View Article and Find Full Text PDF

Premise: Although numerous phylogenetic studies have been conducted in Cactaceae, whole-plastome datasets have not been employed. We used the chollas to develop a plastome dataset for phylogeny reconstruction to test species relationships, biogeography, clade age, and morphological evolution.

Methods: We developed a plastome dataset for most known diploid members of the chollas (42 taxa) as well as for other members of Cylindropuntieae.

View Article and Find Full Text PDF

The amount and patterns of phylodiversity in a community are often used to draw inferences about the local and historical factors affecting community assembly and can be used to prioritize communities and locations for conservation. Because measures of phylodiversity are based on the topology and branch lengths of phylogenetic trees, which are affected by the number and diversity of taxa in the tree, these analyses may be sensitive to changes in taxon sampling and tree reconstruction methods.To investigate the effects of taxon sampling and tree reconstruction methods on measures of phylodiversity, we investigated the community phylogenetics of the Ordway-Swisher Biological Station (Florida), which is home to over 600 species of vascular plants.

View Article and Find Full Text PDF
Article Synopsis
  • Recent biodiversity data resources allow for better estimation of biodiversity metrics, aiding in conservation efforts and understanding ecological and evolutionary processes.
  • Differences in phylogenetic source trees and uncertainties can influence these estimates and affect the interpretation of geographic biodiversity patterns.
  • In studying Florida's vascular plants, using various phylogenetic trees showed only minor differences in biodiversity metrics, leading to consistent identification of conservation areas across the state.
View Article and Find Full Text PDF

Molecular phylogenetic studies of the six currently accepted species in the genus have partially clarified certain aspects of its phylogeny. Most of the studies lack a complete sampling of and are based only in one source of data. Phylogenetic uncertainties in , such as the recognition of as a different genus from , the exclusion of or the affinities of , are here resolved.

View Article and Find Full Text PDF

Members of the cactus family are keystone species of arid and semiarid biomes in the Americas, as they provide shelter and resources to support other members of ecosystems. Extraordinary examples are the several species of flies of the genus Drosophila that lay eggs and feed in their rotting stems, which provide a model system for studying evolutionary processes. Although there is significant progress in understanding the evolution of Drosophila species, there are gaps in our knowledge about the cactus lineages hosting them.

View Article and Find Full Text PDF

Several plant lineages have evolved adaptations that allow survival in extreme and harsh environments including many families within the plant clade Portulacineae (Caryophyllales) such as the Cactaceae, Didiereaceae, and Montiaceae. Here, using newly generated transcriptomic data, we reconstructed the phylogeny of Portulacineae and examined potential correlates between molecular evolution and adaptation to harsh environments. Our phylogenetic results were largely congruent with previous analyses, but we identified several early diverging nodes characterized by extensive gene tree conflict.

View Article and Find Full Text PDF

Premise Of The Study: The Caryophyllales contain ~12,500 species and are known for their cosmopolitan distribution, convergence of trait evolution, and extreme adaptations. Some relationships within the Caryophyllales, like those of many large plant clades, remain unclear, and phylogenetic studies often recover alternative hypotheses. We explore the utility of broad and dense transcriptome sampling across the order for resolving evolutionary relationships in Caryophyllales.

View Article and Find Full Text PDF

Background: In the past three decades, several studies have predominantly relied on a small sample of the plastome to infer deep phylogenetic relationships in the species-rich Melastomataceae. Here, we report the first full plastid sequences of this family, compare general features of the sampled plastomes to other sequenced Myrtales, and survey the plastomes for highly informative regions for phylogenetics.

Methods: Genome skimming was performed for 16 species spread across the Melastomataceae.

View Article and Find Full Text PDF

Miconia sect. Lima is an entirely Greater Antillean clade that consists of 19 known species of shrubs and small trees, which were previously recognized under the polyphyletic genera and . The highest species richness in the clade is represented on Cuba (10 species), followed by Hispaniola (8 species) and then Jamaica (1 species).

View Article and Find Full Text PDF

Many varieties of the cabbage family have leaves covered with superhydrophobic epicuticular wax, which provides them with self-cleaning characteristics. Since the wax also lowers insect adhesion, rinsing of the leaves with water should be an effective way of removing the insects. Conversely, we report that superhydrophobicity of tuscan kale increases resistance of aphids to hydrodynamic removal.

View Article and Find Full Text PDF

Cacti thrive in xeric environments through specialized water storage and collection tactics such as a shallow, widespread root system that maximizes rainwater absorption and spines adapted for fog droplet collection. However, in many cacti, the epidermis, not the spines, dominates the exterior surface area. Yet, little attention has been dedicated to studying interactions of the cactus epidermis with water drops.

View Article and Find Full Text PDF

A high proportion of plant species is predicted to be threatened with extinction in the near future. However, the threat status of only a small number has been evaluated compared with key animal groups, rendering the magnitude and nature of the risks plants face unclear. Here we report the results of a global species assessment for the largest plant taxon evaluated to date under the International Union for Conservation of Nature (IUCN) Red List Categories and Criteria, the iconic Cactaceae (cacti).

View Article and Find Full Text PDF