Alternative models for the estimation of reference evapotranspiration (ETo) are typically assessed using traditional error metrics, such as root mean square error (RMSE), which may not be sufficient to select the best model for irrigation scheduling purposes. Thus, this study analyzes the performance of the original and calibrated Hargreaves-Samani (HS), Romanenko (ROM) and Jensen-Haise (JH) equations, initially assessed using traditional error metrics, for use in irrigation scheduling, considering the simulation of different irrigation intervals/time scales. Irrigation scheduling was simulated using meteorological data collected in Viçosa-MG and Mocambinho-MG, Brazil.
View Article and Find Full Text PDFThis study aims to assess different machine learning approaches for streamflow regionalization in a tropical watershed, analyzing their advantages and limitations, and to point the benefits of using them for water resources management. The algorithms applied were: Random Forest, Earth and linear model. The response variables were the three types of minimum streamflow (Q, Q and Q), besides the long-term average streamflow (Q).
View Article and Find Full Text PDF