Stud Health Technol Inform
August 2024
Feature attribution methods stand as a popular approach for explaining the decisions made by convolutional neural networks. Given their nature as local explainability tools, these methods fall short in providing a systematic evaluation of their global meaningfulness. This limitation often gives rise to confirmation bias, where explanations are crafted after the fact.
View Article and Find Full Text PDFStud Health Technol Inform
August 2024
Extensive research has been conducted on time series and tabular data in the context of classification tasks, considering their distinct data domains. While feature extraction enables the transformation of series into tabular data, direct comparative comparisons between these data types remain scarce. Especially in the domain of medical data, such as electrocardiograms (ECGs), deep learning faces challenges due to its lack of easy and fast interpretability and explainability.
View Article and Find Full Text PDFStud Health Technol Inform
May 2023
Deep Learning architectures for time series require a large number of training samples, however traditional sample size estimation for sufficient model performance is not applicable for machine learning, especially in the field of electrocardiograms (ECGs). This paper outlines a sample size estimation strategy for binary classification problems on ECGs using different deep learning architectures and the large publicly available PTB-XL dataset, which includes 21801 ECG samples. This work evaluates binary classification tasks for Myocardial Infarction (MI), Conduction Disturbance (CD), ST/T Change (STTC), and Sex.
View Article and Find Full Text PDFStud Health Technol Inform
May 2023