Publications by authors named "Lucas Barretto-de-Souza"

Despite the importance of physiological responses to stress in a short-term, chronically these adjustments may be harmful and lead to diseases, including cardiovascular diseases. The lateral hypothalamus (LH) has been reported to be involved in expression of physiological and behavioral responses to stress, but the local neurochemical mechanisms involved are not completely described. The corticotropin-releasing factor (CRF) neurotransmission is a prominent brain neurochemical system implicated in the physiological and behavioral changes induced by aversive threats.

View Article and Find Full Text PDF

Rationale: In a social context, individuals are able to detect external information from others and coordinate behavioral responses according to the situation, a phenomenon called social decision-making. Social decision-making is multifaceted, influenced by emotional and motivational factors like stress, sickness, and hunger. However, the neurobiological basis for motivational state competition and interaction is not well known.

View Article and Find Full Text PDF

The brain angiotensin II acting via AT receptors is a prominent mechanism involved in physiological and behavioral responses during aversive situations. The AT receptor has also been implicated in stress responses, but its role was less explored. Despite these pieces of evidence, the brain sites related to control of the changes during aversive threats by the brain renin-angiotensin system (RAS) are poorly understood.

View Article and Find Full Text PDF

The insular cortex (IC) is engaged in behavioral and physiological responses to emotional stress. Control of physiological functions and behavioral responses has been reported to occur in a site-specific manner along the rostrocaudal axis of the IC. However, a functional topography of the IC regulation of anxiogenic responses caused by stress has never been evaluated.

View Article and Find Full Text PDF

We investigated the role of corticotropin-releasing factor (CRF) neurotransmission within the lateral hypothalamus (LH) in cardiovascular and anxiogenic-like responses evoked by acute and repeated restraint stress in rats. For this, animals were subjected to intra-LH microinjection of a selective CRF (CP376395) or CRF (antisauvagine-30) receptor antagonist before either an acute or the 10th session of restraint stress. Restraint-evoked arterial pressure and heart rate increases, tail skin temperature decrease and anxiogenic-like effect in the elevated plus maze (EPM) were evaluated.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common malignant brain cancer, characterized by high invasiveness and poor prognosis. Docetaxel (DTX) is a chemotherapeutic drug with promising anti-tumor properties. However, conventional intravenous formulations exhibit side effects of systemic biodistribution and low brain bioavailability, limiting their clinical use.

View Article and Find Full Text PDF

The lateral hypothalamus (LH) is implicated in the physiological and behavioral responses during stressful events. However, the local neurochemical mechanisms related to control of stress responses by this hypothalamic area are not completely understood. Therefore, in this study we evaluated the involvement of CRFergic neurotransmission acting through the CRF receptor within the LH in cardiovascular responses evoked by an acute session of restraint stress in rats.

View Article and Find Full Text PDF

The lateral hypothalamus (LH) is a diencephalic structure that has been considered part of the central circuitry regulating the baroreflex function. However, the local neurochemical mechanisms involved in baroreflex control by this hypothalamic area are poorly understood. Therefore, in the present study we investigated the role of corticotropin-releasing factor (CRF) neurotransmission within the LH acting via local CRF and CRF receptors in cardiac baroreflex responses in unanesthetized rats.

View Article and Find Full Text PDF

Background And Purpose: The aim of the present study was to assess the interaction of nitrergic neurotransmission within the bed nucleus of the stria terminalis (BNST) with local glutamatergic and noradrenergic neurotransmission in the control of cardiovascular responses to acute restraint stress in rats.

Experimental Approach: Interaction with local noradrenergic neurotransmission was evaluated using local pretreatment with the selective α -adrenoceptor antagonist WB4101 before microinjection of the NO donor NOC-9 into the BNST. Interaction with glutamatergic neurotransmission was assessed by pretreating the BNST with a selective inhibitor of neuronal NOS (nNOS), Nω-propyl-L-arginine (NPLA) before local microinjection of NMDA.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) constitutes an important component of neural substrates of physiological and behavioral responses to aversive stimuli, and it has been implicated on cardiovascular responses evoked by stress. Nevertheless, the local neurochemical mechanisms involved in BNST control of cardiovascular responses during aversive threats are still poorly understood. Thus, the aim of the present study was to assess the involvement of activation in the BNST of the neuronal isoform of the enzyme nitric oxide synthase (nNOS), as well as of signaling mechanisms related to nitric oxide effects such as soluble guanylate cyclase (sGC) and protein kinase G (PKG) on cardiovascular responses induced by an acute session of restraint stress in male rats.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) is a forebrain structure that has been implicated on cardiovascular responses evoked by emotional stress. However, the local neurochemical mechanisms mediating the BNST control of stress responses are not fully described. In our study we investigated the involvement of glutamatergic neurotransmission within the BNST in cardiovascular changes evoked by acute restraint stress in rats.

View Article and Find Full Text PDF