Publications by authors named "Lucas B Carey"

In mammals, both professional phagocytes and nonprofessional phagocytes (NPPs) can perform phagocytosis. However, limited targets are phagocytosed by NPPs, and thus, the mechanism remains unclear. We find that spores of the yeast Saccharomyces cerevisiae are internalized efficiently by NPPs.

View Article and Find Full Text PDF

Isogenic cells cultured together show heterogeneity in their proliferation rate. To determine the differences between fast and slow-proliferating cells, we developed a method to sort cells by proliferation rate, and performed RNA-seq on slow and fast proliferating subpopulations of pluripotent mouse embryonic stem cells (mESCs) and mouse fibroblasts. We found that slowly proliferating mESCs have a more naïve pluripotent character.

View Article and Find Full Text PDF

Most genetic changes have negligible reversion rates. As most mutations that confer resistance to an adverse condition (e.g.

View Article and Find Full Text PDF

De novo gene origination has been recently established as an important mechanism for the formation of new genes. In organisms with a large genome, intergenic and intronic regions provide plenty of raw material for new transcriptional events to occur, but little is know about how de novo transcripts originate in more densely-packed genomes. Here, we identify 213 de novo originated transcripts in Saccharomyces cerevisiae using deep transcriptomics and genomic synteny information from multiple yeast species grown in two different conditions.

View Article and Find Full Text PDF

To faithfully transmit genetic information, cells must replicate their entire genome before division. This is thought to be ensured by the temporal separation of replication and chromosome segregation. Here we show that in 20-40% of unperturbed yeast cells, DNA synthesis continues during anaphase, late in mitosis.

View Article and Find Full Text PDF

The three-dimensional (3D) organization of chromosomes can influence transcription. However, the frequency and magnitude of these effects remain debated. To determine how changes in chromosome positioning affect transcription across thousands of genes with minimal perturbation, we characterized nuclear organization and global gene expression in budding yeast containing chromosome fusions.

View Article and Find Full Text PDF

DNA replication perturbs the dosage balance among genes; at mid-S phase, early-replicating genes have doubled their copies while late-replicating ones have not. Dosage imbalance among genes, especially within members of a protein complex, is toxic to cells. However, the molecular mechanisms that cells use to deal with such imbalance remain not fully understood.

View Article and Find Full Text PDF

Cells responds to diverse stimuli by changing the levels of specific effector proteins. These changes are usually examined using high throughput RNA sequencing data (RNA-Seq); transcriptional regulation is generally assumed to directly influence protein abundances. However, the correlation between RNA-Seq and proteomics data is in general quite limited owing to differences in protein stability and translational regulation.

View Article and Find Full Text PDF

Cells with complex aneuploidies display a wide range of phenotypic abnormalities. However, the molecular basis for this has been mainly studied in trisomic (2n + 1) and disomic (n + 1) cells. To determine how karyotype affects proliferation in cells with complex aneuploidies, we generated 92 2n + x yeast strains in which each diploid cell has between 3 and 12 extra chromosomes.

View Article and Find Full Text PDF

The effects of cell-to-cell variation (noise) in gene expression have proven difficult to quantify because of the mechanistic coupling of noise to mean expression. To independently quantify the effects of changes in mean expression and noise we determine the fitness landscapes in mean-noise expression space for 33 genes in yeast. For most genes, short-lived (noise) deviations away from the expression optimum are nearly as detrimental as sustained (mean) deviations.

View Article and Find Full Text PDF

Objective: The objective of this experiment was to identify transcripts in baker's yeast (Saccharomyces cerevisiae) that could have originated from previously non-coding genomic regions, or de novo. We generated this data to be able to compare the transcriptomes of different species of Ascomycota.

Data Description: We generated high-depth RNA sequencing data for 11 species of yeast: Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae, Saccharomyces kudriavzevii, Saccharomyces bayanus, Naumovia castelii, Kluyveromyces lactis, Lachancea waltii, Lachancea thermotolerans, Lachancea kluyveri, and Schizosaccharomyces pombe.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the fitness landscape is crucial for grasping how genetic information results in functional organisms, with this study examining the His3 gene involved in histidine synthesis in various species.
  • Only 15% of amino acids in yeast His3 orthologues were consistently neutral, while the other 85% had fitness effects that varied based on the genetic context.
  • About 67% of amino acid substitutions exhibited sign epistasis, showing different fitness impacts depending on the genetic background, contributing to a complex fitness landscape where many optimal paths are blocked.
View Article and Find Full Text PDF

Mutations frequently have outcomes that differ across individuals, even when these individuals are genetically identical and share a common environment. Moreover, individual microbial and mammalian cells can vary substantially in their proliferation rates, stress tolerance, and drug resistance, with important implications for the treatment of infections and cancer. To investigate the causes of cell-to-cell variation in proliferation, we used a high-throughput automated microscopy assay to quantify the impact of deleting >1500 genes in yeast.

View Article and Find Full Text PDF

Cellular information processing is generally attributed to the complex networks of genes and proteins that regulate cell behavior. It is still unclear, however, what are the main features of those networks that allow a cell to encode and interpret its ever changing environment. Here, we address this question by studying the computational capabilities of the transcriptional regulatory networks of five evolutionary distant organisms.

View Article and Find Full Text PDF

Background: Mutation rates vary across the genome. Many trans factors that influence mutation rates have been identified, as have specific sequence motifs at the 1-7-bp scale, but cis elements remain poorly characterized. The lack of understanding regarding why different sequences have different mutation rates hampers our ability to identify positive selection in evolution and to identify driver mutations in tumorigenesis.

View Article and Find Full Text PDF

Frameshifting errors are common and mRNA quality control pathways, such as nonsense-mediated decay (NMD), exist to degrade these aberrant transcripts. Recent work has shown the existence of a genetic link between NMD and codon-usage mediated mRNA decay. Here we present computational evidence that these pathways are synergic for removing frameshifts.

View Article and Find Full Text PDF

Organisms regulate gene expression through changes in the activity of transcription factors (TFs). In yeast, the response of genes to changes in TF activity is generally assumed to be encoded in the promoter. To directly test this assumption, we chose 42 genes and, for each, replaced the promoter with a synthetic inducible promoter and measured how protein expression changes as a function of TF activity.

View Article and Find Full Text PDF

African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs causing significant economic consequences to the swine industry. The ASFV genome encodes for more than 150 genes, but only a few of them have been studied in detail. Here we report the characterization of open reading frame L83L which encodes a highly conserved protein across all ASFV isolates.

View Article and Find Full Text PDF

Information that regulates gene expression is encoded throughout each gene but if different regulatory regions can be understood in isolation, or if they interact, is unknown. Here we measure mRNA levels for 10,000 open reading frames (ORFs) transcribed from either an inducible or constitutive promoter. We find that the strength of cotranslational regulation on mRNA levels is determined by promoter architecture.

View Article and Find Full Text PDF

Transcription factors (TFs) are key mediators that propagate extracellular and intracellular signals through to changes in gene expression profiles. However, the rules by which promoters decode the amount of active TF into target gene expression are not well understood. To determine the mapping between promoter DNA sequence, TF concentration, and gene expression output, we have conducted in budding yeast a large-scale measurement of the activity of thousands of designed promoters at six different levels of TF.

View Article and Find Full Text PDF
Article Synopsis
  • Autoregulatory feedback loops are crucial for regulating various molecules, with negative loops enhancing system robustness and positive loops facilitating cell state transitions.
  • Recent studies suggest many novel feedback loops, but current methods struggle to detect all regulatory interactions and their dynamics.
  • This research presents a new mathematical and experimental approach for identifying and quantifying feedback loops, specifically through RNA binding proteins in yeast, revealing insights into their regulatory roles and the effect of synthetic feedback constructions.
View Article and Find Full Text PDF

Errors during transcription may play an important role in determining cellular phenotypes: the RNA polymerase error rate is >4 orders of magnitude higher than that of DNA polymerase and errors are amplified >1000-fold due to translation. However, current methods to measure RNA polymerase fidelity are low-throughout, technically challenging, and organism specific. Here I show that changes in RNA polymerase fidelity can be measured using standard RNA sequencing protocols.

View Article and Find Full Text PDF

Isogenic cells show a large degree of variability in growth rate, even when cultured in the same environment. Such cell-to-cell variability in growth can alter sensitivity to antibiotics, chemotherapy and environmental stress. To characterize transcriptional differences associated with this variability, we have developed a method--FitFlow--that enables the sorting of subpopulations by growth rate.

View Article and Find Full Text PDF

The number of applicants vastly outnumbers the available academic faculty positions. What makes a successful academic job market candidate is the subject of much current discussion [1-4]. Yet, so far there has been no quantitative analysis of who becomes a principal investigator (PI).

View Article and Find Full Text PDF