To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators.
View Article and Find Full Text PDFWe discuss potential caveats when estimating topologies of 3D brain networks from surface recordings. It is virtually impossible to record activity from all single neurons in the brain and one has to rely on techniques that measure average activity at sparsely located (non-invasive) recording sites. Effects of this spatial sampling in relation to structural network measures like centrality and assortativity were analyzed using multivariate classifiers.
View Article and Find Full Text PDFIn this letter the authors discuss the relationship between structure and random walk dynamics in directed complex networks, with an emphasis on identifying whether a topological hub is also a dynamical hub. They establish the necessary conditions for networks to be topologically and dynamically fully correlated (e.g.
View Article and Find Full Text PDF