The growing use of multimodal high-resolution volumetric data in pre-clinical studies leads to challenges related to the management and handling of the large amount of these datasets. Contrarily to the clinical context, currently there are no standard guidelines to regulate the use of image compression in pre-clinical contexts as a potential alleviation of this problem. In this work, the authors study the application of lossy image coding to compress high-resolution volumetric biomedical data.
View Article and Find Full Text PDFIEEE Trans Image Process
February 2022
Common representations of light fields use four-dimensional data structures, where a given pixel is closely related not only to its spatial neighbours within the same view, but also to its angular neighbours, co-located in adjacent views. Such structure presents increased redundancy between pixels, when compared with regular single-view images. Then, these redundancies are exploited to obtain compressed representations of the light field, using prediction algorithms specifically tailored to estimate pixel values based on both spatial and angular references.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Machine learning algorithms are progressively assuming important roles as computational tools to support clinical diagnosis, namely in the classification of pigmented skin lesions using RGB images. Most current classification methods rely on common 2D image features derived from shape, colour or texture, which does not always guarantee the best results. This work presents a contribution to this field, by exploiting the lesions' border line characteristics using a new dimension - depth, which has not been thoroughly investigated so far.
View Article and Find Full Text PDFMedical image classification through learning-based approaches has been increasingly used, namely in the discrimination of melanoma. However, for skin lesion classification in general, such methods commonly rely on dermoscopic or other 2D-macro RGB images. This work proposes to exploit beyond conventional 2D image characteristics, by considering a third dimension (depth) that characterises the skin surface rugosity, which can be obtained from light-field images, such as those available in the SKINL2 dataset.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2019
This paper presents a special matrix factorization based on sparse representation that detects anomalies in video sequences generated with moving cameras. Such representation is made by associating the frames of the target video, that is a sequence to be tested for the presence of anomalies, with the frames of an anomaly-free reference video, which is a previously validated sequence. This factorization is done by a sparse coefficient matrix, and any target-video anomaly is encapsulated into a residue term.
View Article and Find Full Text PDF