Adult neurogenesis could be considered as a homeostatic mechanism that accompanies the continuous growth of teleost fish. As an alternative but not excluding hypothesis, adult neurogenesis would provide a form of plasticity necessary to adapt the brain to environmental challenges. The zebrafish pallium is a brain structure involved in the processing of various cognitive functions and exhibits extended neurogenic niches throughout the periventricular zone.
View Article and Find Full Text PDFAlterations in the social environment, such as isolating an individual that would normally live in a social group, can generate physiological responses that compromise an individual's capacity to learn. To investigate this, we tested whether social isolation impairs learning skills in the rainbow trout. We show that rainbow trout can achieve an active avoidance (AA) learning program with inter-individual variability.
View Article and Find Full Text PDFCompartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies.
View Article and Find Full Text PDFDeveloping granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks.
View Article and Find Full Text PDFThe adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission.
View Article and Find Full Text PDFThe adult dentate gyrus generates new granule cells (GCs) that develop over several weeks and integrate into the preexisting network. Although adult hippocampal neurogenesis has been implicated in learning and memory, the specific role of new GCs remains unclear. We examined whether immature adult-born neurons contribute to information encoding.
View Article and Find Full Text PDFThe adult hippocampus continuously generates new cohorts of immature neurons with increased excitability and plasticity. The window for the expression of those unique properties in each cohort is determined by the time required to acquire a mature neuronal phenotype. Here, we show that local network activity regulates the rate of maturation of adult-born neurons along the septotemporal axis of the hippocampus.
View Article and Find Full Text PDFThe granule cell layer (GCL) of the dentate gyrus contains neurons generated during embryonic, early postnatal and adult life. During adulthood there is a continuous production of neuronal cohorts that develop and functionally integrate in the preexisting circuits. This morphogenic process generates a stratified GCL, with the outermost layers containing dentate granule cells (DGCs) generated during perinatal life, and the innermost layers containing adult-born DGCs.
View Article and Find Full Text PDFNeurons born in the adult dentate gyrus develop, mature, and connect over a long interval that can last from six to eight weeks. It has been proposed that, during this period, developing neurons play a relevant role in hippocampal signal processing owing to their distinctive electrical properties. However, it has remained unknown whether immature neurons can be recruited into a network before synaptic and functional maturity have been achieved.
View Article and Find Full Text PDFThe participation of type I GnRH receptor (GnRH-R) on GnRH-II-induced gonadotropin secretion in rat pituitary cells was investigated. Furthermore, we extended the study of GnRH-II action to ovarian cells. The GnRH-II was able to mobilize inositol triphosphate (IP(3)) and to induce LH and FSH release in a dose-dependent manner in pituitary cells and in a GnRH-I-like manner.
View Article and Find Full Text PDF