Discotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10(-2) electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L.
View Article and Find Full Text PDFFuture applications of discotic liquid crystals (DLCs) in electronic devices depend on a marked improvement of their conductivity properties. We present a study of 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and show how local conformation, structural defects, and thermal motions on the picosecond time scale strongly affect the efficient charge transport in DLCs. A direct and successful comparison of classical molecular dynamics (MD) simulations with both neutron powder diffraction and quasielastic neutron scattering (QENS) give a full insight into the structural and dynamical properties of HAT6.
View Article and Find Full Text PDF