Nipah virus, a member of the family, is a highly pathogenic nonsegmented, negative-sense RNA virus (nsNSV) which causes severe neurological and respiratory illnesses in humans. There are no available drugs or vaccines to combat this virus. A complex of large polymerase protein (L) and phosphoprotein (P) of Nipah virus supports replication and transcription and affords a target for antiviral drug development.
View Article and Find Full Text PDFMarburg virus (MARV) causes lethal hemorrhagic fever in humans, posing a threat to global health. We determined by cryogenic electron microscopy (cryo-EM) the MARV helical ribonucleoprotein (RNP) complex structure in single-layered conformation, which differs from the previously reported structure of a double-layered helix. Our findings illuminate novel RNP interactions and expand knowledge on MARV genome packaging and nucleocapsid assembly, both processes representing attractive targets for the development of antiviral therapeutics against MARV disease.
View Article and Find Full Text PDFSince its outbreak, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spread rapidly, causing the Coronavirus Disease 19 (COVID-19) pandemic. Even with the vaccines' administration, the virus continued to circulate due to inequal access to prevention and therapeutic measures in African countries. Information about COVID-19 in Africa has been limited and contradictory, and thus regional studies are important.
View Article and Find Full Text PDFBackground: Oriental hornets are large predatory hymenoptera that occur in the southern part of Asia and the southeastern Mediterranean. Among many pests of bee colonies, Vespa orientalis was recorded to be one of the most destructive.
Objectives: The aim of this study was to: (1) monitor the presence of pathogens carried by V.
The coronavirus disease 2019 (COVID-19) pandemic is fading, however its etiologic agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues posing - despite the availability of licensed vaccines - a global health threat, due to the potential emergence of vaccine-resistant SARS-CoV-2 variants. This makes the development of new drugs against COVID-19 a persistent urgency and sets as research priority the validation of novel therapeutic targets within the SARS-CoV-2 proteome. Among these, a promising one is the SARS-CoV-2 nucleocapsid (N) phosphoprotein, a major structural component of the virion with indispensable role in packaging the viral genome into a ribonucleoprotein (RNP) complex, which also contributes to SARS-CoV-2 innate immune evasion by inhibiting the host cell type-I interferon (IFN-I) response.
View Article and Find Full Text PDFThe virion protein 40 (VP40) forms the viral matrix, mediates budding, and downregulates viral RNA synthesis in ebolaviruses. In this issue of Structure, Werner et al. present a structure of VP40 from Sudan ebolavirus with a previously unresolved disulfide bridge that enables regulation of VP40 functions via human thioredoxin.
View Article and Find Full Text PDFEbola virus (EBOV) and Marburg virus (MARV) are highly pathogenic viruses in humans, against which approved antivirals are lacking. During EBOV and MARV infection, coiled-coil mediated oligomerization is essential for the virion protein 35 (VP35) polymerase co-factor function and type I interferon antagonism, making VP35 coiled-coil an elective drug target. We established a tripartite split-green fluorescent protein (GFP) fluorescence complementation (FC) system based on recombinant GFP-tagged EBOV and MARV VP35, which probes VP35 coiled-coil assembly by monitoring fluorescence on colonies, or in 96/384-multiwell.
View Article and Find Full Text PDFEbola virus (EBOV) is one of the deadliest infective agents whose lethality is linked to the ability to efficiently bypass the host's innate antiviral response. EBOV multifunctional protein VP35 plays a major role in viral replication both as polymerase cofactor and interferon (IFN) antagonist. By hiding the non-self 5'-ppp dsRNA from the cellular receptor RIG-I, VP35 prevents its activation and inhibits IFN-β production.
View Article and Find Full Text PDFCetacean morbillivirus (CeMV) infects marine mammals often causing a fatal respiratory and neurological disease. Recently, CeMV has expanded its geographic and host species range, with cases being reported worldwide among dolphins, whales, seals, and other aquatic mammalian species, and therefore has emerged as the most threatening nonanthropogenic factor affecting marine mammal's health and conservation. Extensive research efforts have aimed to understand CeMV epidemiology and ecology, however, the molecular mechanisms underlying its transmission and pathogenesis are still poorly understood.
View Article and Find Full Text PDFCetacean morbillivirus (CeMV) is an emerging and highly infectious paramyxovirus that causes outbreaks in cetaceans and occasionally in pinnipeds, representing a major threat to biodiversity and conservation of endangered marine mammal populations in both hemispheres. As for all non-segmented, negative-sense, single-stranded RNA (ssRNA) viruses, the morbilliviral genome is enwrapped by thousands of nucleoprotein (N) protomers. Each bound to six ribonucleotides, N protomers assemble to form a helical ribonucleoprotein (RNP) complex that serves as scaffold for nucleocapsid formation and as template for viral replication and transcription.
View Article and Find Full Text PDFThe emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome contains nine open reading frames (ORFs) that encode for accessory proteins which, although dispensable for viral replication, are important for the modulation of the host infected cell metabolism and innate immunity evasion. Among those, the ORF8 gene encodes for the homonymous multifunctional, highly immunogenic, immunoglobulin-like protein that was recently found to inhibit presentation of viral antigens by class I major histocompatibility complex, suppress the type I interferon antiviral response and interact with host factors involved in pulmonary inflammation and fibrogenesis. Moreover, the ORF8 is a hypervariable gene rapidly evolving among SARS-related coronaviruses, with a tendency to recombine and undergo deletions that are deemed to facilitate the virus adaptation to the human host.
View Article and Find Full Text PDFSynaptic transmission is characterized by fast, tightly coupled processes and complex signaling pathways that require a precise protein organization, such as the previously reported nanodomain colocalization of pre- and postsynaptic proteins. Here, we used cryo-electron tomography to visualize synaptic complexes together with their native environment comprising interacting proteins and lipids on a 2- to 4-nm scale. Using template-free detection and classification, we showed that tripartite trans-synaptic assemblies (subcolumns) link synaptic vesicles to postsynaptic receptors and established that a particular displacement between directly interacting complexes characterizes subcolumns.
View Article and Find Full Text PDFUnprecedented by number of casualties and socio-economic burden occurring worldwide, the coronavirus disease 2019 (Covid-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the worst health crisis of this century. In order to develop adequate countermeasures against Covid-19, identification and structural characterization of suitable antiviral targets within the SARS-CoV-2 protein repertoire is urgently needed. The nucleocapsid phosphoprotein (N) is a multifunctional and highly immunogenic determinant of virulence and pathogenicity, whose main functions consist in oligomerizing and packaging the single-stranded RNA (ssRNA) viral genome.
View Article and Find Full Text PDFA novel type of lipid droplet/lipoprotein (LD/LP) particle from Thermoplasma acidophilum has been identified recently, and based on biochemical evidences, it was named Thermoplasma Quinone Droplet (TaQD). The major components of TaQDs are menaquinones, and to some extent polar lipids, and the 153 amino acid long Ta0547 vitellogenin-N domain protein. In this paper, the aim is to identify TaQD proteome components with 1D-SDS-PAGE/LC-MS/MS and cross reference them with Edman degradation.
View Article and Find Full Text PDFThe multifunctional virion protein 35 (VP35) of ebolaviruses is a critical determinant of virulence and pathogenesis indispensable for viral replication and host innate immune evasion. Essential for VP35 function is homo-oligomerization via a coiled-coil motif. Here we report crystal structures of VP35 oligomerization domains from the prototypic Ebola virus (EBOV) and the non-pathogenic Reston virus (RESTV), together with a comparative biophysical characterization of the domains from all known species of the Ebolavirus genus.
View Article and Find Full Text PDFEbola virus (EBOV) is a filovirus that causes a severe and rapidly progressing hemorrhagic syndrome; a recent epidemic illustrated the urgent need for novel therapeutic agents because no drugs have been approved for treatment of Ebola virus. A key contribution to the high lethality observed during EBOV outbreaks comes from viral evasion of the host antiviral innate immune response in which viral protein VP35 plays a crucial role, blocking interferon type I production, first by masking the viral double-stranded RNA (dsRNA) and preventing its detection by the pattern recognition receptor RIG-I. Aiming to identify inhibitors of the interaction of VP35 with the viral dsRNA, counteracting the VP35 viral innate immune evasion, we established a new methodology for high-yield recombinant VP35 (rVP35) expression and purification and a novel and robust fluorescence-based rVP35-RNA interaction assay ( Z' factor of 0.
View Article and Find Full Text PDFThe multifunctional Ebola virus (EBOV) VP35 protein is a key determinant of virulence. VP35 is essential for EBOV replication, is a component of the viral RNA polymerase and participates in nucleocapsid formation. Furthermore, VP35 contributes to EBOV evasion of the host innate immune response by suppressing RNA silencing and blocking RIG-I like receptors' pathways that lead to type I interferon (IFN) production.
View Article and Find Full Text PDFA variety of protein expression tags with different biochemical properties has been used to enhance the yield and solubility of recombinant proteins. Ubiquitin, SUMO (small ubiquitin-like modifier) and prokaryotic ubiquitin like MoaD (molybdopterin synthase, small subunit) fusion tags are getting more popular because of their small size. In this paper we report on the use of ubiquitin-like small archaeal modifier proteins (SAMPs) as fusion tags since they proved to increase expression yield, stability and solubility in our experiments.
View Article and Find Full Text PDFDouble-stranded RNA (dsRNA) is synthesized during the course of infection by RNA viruses as a byproduct of replication and transcription and acts as a potent trigger of the host innate antiviral response. In the cytoplasm of the infected cell, recognition of the presence of viral dsRNA as a signature of "non-self" nucleic acid is carried out by RIG-I-like receptors (RLRs), a set of dedicated helicases whose activation leads to the production of type I interferon α/β (IFN-α/β). To overcome the innate antiviral response, RNA viruses encode suppressors of IFN-α/β induction, which block RLRs recognition of dsRNA by means of different mechanisms that can be categorized into: (i) dsRNA binding and/or shielding ("hide"), (ii) dsRNA termini processing ("mask") and (iii) direct interaction with components of the RLRs pathway ("hit").
View Article and Find Full Text PDFJ Med Chem
November 2013
The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro.
View Article and Find Full Text PDFBackground: The degradative activity of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), termed ribonuclease H (RNase H), which hydrolyzes the RNA component of the heteroduplex RNA:DNA replication intermediate, is an excellent target for drug discovery. Anthraquinones (AQs) and their derivatives, which are common secondary metabolites occurring in bacteria, fungi, lichens and a large number of families in higher plants, have been reported to have several biological activities including that of inhibiting HIV-1 RT activities in biochemical assays.
Methods: We have assayed new AQ derivatives on HIV-1 RNase H activities in biochemical assays.
We report the first application of ligand-based virtual screening (VS) methods for discovering new compounds able to inhibit both human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT)-associated functions, DNA polymerase and ribonuclease H (RNase H) activities. The overall VS campaign consisted of two consecutive screening processes. In the first, the VS platform Rapid Overlay of Chemical Structures (ROCS) was used to perform in silico shape-based similarity screening on the NCI compounds database in which a hydrazone derivative, previously shown to inhibit the HIV-1 RT, was chosen.
View Article and Find Full Text PDF