The so-called metaverse relates to a vision of a virtual, digital world which is parallel to the real, physical world, where each user owns and interact through his/her own avatar. Music is one of the possible activities that can be conducted in such a space. The "Musical Metaverse" (MM), the metaverse part which is dedicated to musical activities, is currently in its infancy, although is a concept that is constantly evolving and is progressing at a steady pace.
View Article and Find Full Text PDFPers Ubiquitous Comput
October 2022
In the past two decades, we have witnessed the diffusion of an increasing number of technologies, products, and applications at the intersection of music and networking. As a result of the growing attention devoted by academy and industry to this area, three main research fields have emerged and progressively consolidated: the Networked Music Performances, Ubiquitous Music, and the Internet of Musical Things. Based on the review of the most relevant works in these fields, this paper attempts to delineate their differences and commonalities.
View Article and Find Full Text PDFWhen we walk in place with our eyes closed after a few minutes of walking on a treadmill, we experience an unintentional forward body displacement (drift), called the sensory-motor aftereffect. Initially, this effect was thought to be due to the mismatch experienced during treadmill walking between the visual (absence of optic flow signaling body steadiness) and proprioceptive (muscle spindles firing signaling body displacement) information. Recently, the persistence of this effect has been shown even in the absence of vision, suggesting that other information, such as the sound of steps, could play a role.
View Article and Find Full Text PDFIn this study, we investigated the role of interactive auditory feedback in modulating the inadvertent forward drift experienced while attempting to walk in place with closed eyes following a few minutes of treadmill walking. Simulations of footstep sounds upon surface materials such as concrete and snow were provided by means of a system composed of headphones and shoes augmented with sensors. In a control condition, participants could hear their actual footstep sounds.
View Article and Find Full Text PDFIn this paper, we describe several experiments whose goal is to evaluate the role of plantar vibrotactile feedback in enhancing the realism of walking experiences in multimodal virtual environments. To achieve this goal we built an interactive and a noninteractive multimodal feedback system. While during the use of the interactive system subjects physically walked, during the use of the noninteractive system the locomotion was simulated while subjects were sitting on a chair.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2011
We propose a system that affords real-time sound synthesis of footsteps on different materials. The system is based on microphones, which detect real footstep sounds from subjects, from which the ground reaction force (GRF) is estimated. Such GRF is used to control a sound synthesis engine based on physical models.
View Article and Find Full Text PDF