Purpose: To evaluate, through the in vivo confocal microscopy, the pathological changes of each corneal layer in eyes affected by pseudoexfoliation syndrome.
Methods: We studied 40 eyes of 40 patients with diagnosis of unilateral senile cataract associated with pseudoexfoliation syndrome and 40 eyes of 40 control subjects with senile cataract without pseudoexfoliation syndrome. All patients underwent a complete ophthalmic examination including best corrected visual acuity, slit-lamp examination, corneal sensitivity measurement using a Cochet-Bonnet nylon thread esthesiometer, and anterior segment optical coherence tomography (Visante OCT, Carl Zeiss Meditec AG, Germany); in vivo confocal microscopy of corneal sections (endothelium, stroma, sub-basal nerve plexus, and superficial and basal epithelium) was performed with the ConfoScan 4.
Graefes Arch Clin Exp Ophthalmol
December 2015
Purpose: To investigate the trend of temperature variation during lens fragmentation simulated by a femtosecond laser on an in vitro eye model.
Methods: In our experimental study, a convex cylinder of gelatinous material, usually employed in femtosecond laser calibration, was used to simulate both an anterior segment and a crystalline lens during fragmentation performed with the Victus femtosecond laser (Technolas Perfect Vision GmbH, Germany; Bausch + Lomb Incorporated, USA). Two radiated energies (7000 nJ and 9000 nJ) and three cutting patterns (crosses, circles and cross + circle) were applied.
Purpose: To assess corneal thermal profile during combined riboflavin and accelerated UV corneal collagen cross-linking (A-CXL) using in vivo surface thermographic analysis.
Methods: In this open-label, nonrandomized, prospective pilot study, 28 eyes of 28 patients were included. The study was conduced at the Department of Surgery and Translational Medicine, University of Florence, Italy, in collaboration with the Ophthalmic Operative Unit of Siena University, Italy.