Publications by authors named "Luca Szegletes"

. The development of deep learning models for electroencephalography (EEG) signal processing is often constrained by the limited availability of high-quality data. Data augmentation techniques are among the solutions to overcome these challenges, and deep neural generative models, with their data synthesis capabilities, are potential candidates.

View Article and Find Full Text PDF

Background: Attention-deficit/hyperactivity disorder (ADHD) is thought to stem from aberrancies in large-scale cognitive control networks. However, the exact nature of aberrant brain circuit dynamics involving these control networks is poorly understood. Using a saliency-based triple-network model of cognitive control, we tested the hypothesis that dynamic cross-network interactions among the salience, central executive, and default mode networks are dysregulated in children with ADHD, and we investigated how these dysregulations contribute to inattention.

View Article and Find Full Text PDF

Background: Attention-deficit/hyperactivity disorder (ADHD) is increasingly viewed as a disorder stemming from disturbances in large-scale brain networks, yet the exact nature of these impairments in affected children is poorly understood. We investigated a saliency-based triple-network model and tested the hypothesis that cross-network interactions between the salience network (SN), central executive network, and default mode network are dysregulated in children with ADHD. We also determined whether network dysregulation measures can differentiate children with ADHD from control subjects across multisite datasets and predict clinical symptoms.

View Article and Find Full Text PDF

We present a comparative study of the performance of different basis functions for the nonparametric modeling of neural activity in response to natural stimuli. Based on naturalistic video sequences, a generative model of neural activity was created using a stochastic linear-nonlinear-spiking cascade. The temporal dynamics of the spiking response is well captured with cubic splines with equidistant knot spacings.

View Article and Find Full Text PDF