Human pre-mRNA splicing requires the removal of introns with highly variable lengths, from tens to over a million nucleotides. Therefore, mechanisms of intron recognition and splicing are likely not universal. Recently, we reported that splicing in a subset of human short introns with truncated polypyrimidine tracts depends on RBM17 (SPF45), instead of the canonical splicing factor U2 auxiliary factor (U2AF) heterodimer.
View Article and Find Full Text PDF: Data management is fast becoming an essential part of scientific practice, driven by open science and FAIR (findable, accessible, interoperable, and reusable) data sharing requirements. Whilst data management plans (DMPs) are clear to data management experts and data stewards, understandings of their purpose and creation are often obscure to the producers of the data, which in academic environments are often PhD students. : Within the RNAct EU Horizon 2020 ITN project, we engaged the 10 RNAct early-stage researchers (ESRs) in a training project aimed at formulating a DMP.
View Article and Find Full Text PDFHuman pre-mRNA introns vary in size from under fifty to over a million nucleotides. We searched for essential factors involved in the splicing of human short introns by screening siRNAs against 154 human nuclear proteins. The splicing activity was assayed with a model HNRNPH1 pre-mRNA containing short 56-nucleotide intron.
View Article and Find Full Text PDF