Microplastics are known to accumulate in sediment beds of aquatic environments where they can be buried. Once buried they can remobilize due to high energetic events, entering the water column again. Here, turbulence induced by an oscillating grid device was used to investigate the remobilization of microfibers (MF) buried into the sediment bed.
View Article and Find Full Text PDFSci Total Environ
December 2023
Several studies focused on the role of rivers as vectors of microplastics (MPs) towards the sea. It is well known that during their path through the fluvial environment, MPs interact with riverbed sediments; however, the main factors impacting the mobility of MPs within the upper part of the hyporheic zone are not clear yet. The present work investigates the role of different sediment size layers in affecting the mobility of the most common MP (Polyethylene terephthalate - PET - spheres, PET 3D-ellipsoids, polystyrene - PS - fragments and polyamide - PA - fibers) within sediment porous media under different hydraulic loads (H) and time scales (t) conditions.
View Article and Find Full Text PDFSci Total Environ
September 2023
Microplastic particles (MP) are an emerging contaminant threatening many aquatic systems. Because of the sharp increase in plastic manufacture, the concentration of MP in natural ecosystems has grown dramatically. While it is known that when MP enter aquatic ecosystems they are transported and dispersed via different mechanisms (currents, waves, turbulence), the processes involved are still poorly understood.
View Article and Find Full Text PDFEnviron Pollut
December 2021
Transport processes of plastic particles in freshwater and marine environments are one of the relevant advances of knowledge in predicting the fate of plastic in the environment. Here, we investigated the effect of different shapes on the settling velocity, finding a representative reference diameter which encompasses three-dimensional shapes like pellets or spherules, two-dimensional shapes like fragments or disks, and one-dimensional shapes like filaments or fibers. The new method is able to predict the settling velocity of plastic and natural particles given the representative size and the Corey shape factor coefficient, over the entire range of viscous to turbulent flow regime.
View Article and Find Full Text PDF