Publications by authors named "Luca Razzari"

We investigate the enhanced terahertz generation in the organic crystal BNA when pumped by compressed high-energy ytterbium laser pulses. By compressing the pump pulses from 170 fs down to 43 fs using an argon-filled hollow-core fiber and chirped mirrors, the terahertz conversion efficiency is increased by 2.4 times, leading to the generation of multi-microjoule terahertz pulses with a frequency spectrum almost twice as wide, extending up to 19 THz.

View Article and Find Full Text PDF

VO is a promising phase change material offering a large contrast of electric, thermal, and optical properties when transitioning from semiconductor to metallic phase. Here we show that a hybrid metamaterial obtained by proper combination of a VO layer and a nanodisk gold array provides a tunable plasmonic gap resonance in the infrared range. Specifically, we have designed and fabricated a metal-insulator-metal gap resonance by inserting sub-wavelength VO film between a flat gold layer and a gold nanodisk resonator array.

View Article and Find Full Text PDF

Non-linear materials are cornerstones of modern optics and electronics. Strong dependence on the intrinsic properties of particular materials, however, inhibits the at-will extension of demanding non-linear effects, especially those second-order ones, to widely adopted centrosymmetric materials (for example, silicon) and technologically important burgeoning spectral domains (for example, terahertz frequencies). Here we introduce a universal route to efficient non-linear responses enabled by exciting non-linear Thomson scattering, a fundamental process in electrodynamics that was known to occur only in relativistic electrons in metamaterial composed of linear materials.

View Article and Find Full Text PDF

Recently, localized surface plasmon resonances (SPRs) of metallic nanoparticles (NPs) have been widely used to construct plasmonic nanohybrids for heterogeneous photocatalysis. For example, the combination of plasmonic Au NPs and TiO provides pure TiO visible-light activity. The SPR effect induces an electric field and consequently enhances light scattering and absorption, favoring the transfer of photon energy to hot carriers for catalytic reactions.

View Article and Find Full Text PDF

Analogous to the case of classical metal oxide semiconductor field-effect transistors, transport properties of graphene-based devices are determined by scattering from adventitious charged impurities that are invariably present. The presence of charged impurities renders experimental graphene samples "extrinsic" in that their electrical performances also depend on the environment in which graphene operates. While the role of such an extrinsic disorder component has been studied for conventional charge transport in graphene, its impact on the magnetotransport remains unexplored.

View Article and Find Full Text PDF

Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n-type materials.

View Article and Find Full Text PDF

We present an innovative implementation of the solid-state-biased coherent detection (SSBCD) technique, which we have recently introduced for the reconstruction of both amplitude and phase of ultra-broadband terahertz pulses. In our previous works, the SSBCD method has been operated via a heterodyne scheme, which involves demanding square-wave voltage amplifiers, phase-locked to the THz pulse train, as well as an electronic circuit for the demodulation of the readout signal. Here, we demonstrate that the SSBCD technique can be operated via a very simple homodyne scheme, exploiting plain static bias voltages.

View Article and Find Full Text PDF

The TiO/Au nanostructure has been acknowledged as one of the most classic visible-light active photocatalysts due to the surface plasmon resonance (SPR) of Au nanoparticles. In many cases, the SPR effect only features weak visible light absorption in conventional TiO/Au nanostructures. Here, we demonstrate a design of TiO/Au/TiO with a combination of whispering gallery mode (WGM) resonances and SPR for efficient visible-light-driven photocatalysis.

View Article and Find Full Text PDF

In view of minimally-invasive clinical interventions, laser tissue soldering assisted by plasmonic nanoparticles is emerging as an appealing concept in surgical medicine, holding the promise of surgeries without sutures. Rigorous monitoring of the plasmonically-heated solder and the underlying tissue is crucial for optimizing the soldering bonding strength and minimizing the photothermal damage. To this end, we propose a non-invasive, non-contact, and non-ionizing modality for monitoring nanoparticle-assisted laser-tissue interaction and visualizing the localized photothermal damage, by taking advantage of the unique sensitivity of terahertz radiation to the hydration level of biological tissue.

View Article and Find Full Text PDF
Article Synopsis
  • A system for generating extremely broadband terahertz (THz) pulses is developed using a Ytterbium (Yb) laser that produces 170-fs-long pulses at 1030 nm.
  • The pulses are initially broadened in an argon-filled hollow-core capillary fiber and then compressed to about 18 fs using chirped mirrors.
  • This process yields THz pulses with bandwidths of up to 60 THz and peak electric fields reaching 55 kV/cm, paving the way for advanced THz spectroscopy systems.
View Article and Find Full Text PDF

Recent observations have suggested that nonionizing radiation in the microwave and terahertz (THz; far-infrared) regimes could have an effect on double-stranded DNA (dsDNA). These observations are of significance owing to the omnipresence of microwave emitters in our daily lives (e.g.

View Article and Find Full Text PDF

We introduce hydrofluorocarbon molecules as an alternative medium to noble gases with low ionization potential like krypton or xenon to compress ultrashort pulses of relatively low energy in a conventional hollow core fiber with subsequent dispersion compensation. Spectral broadening of pulses from two different laser systems exceeded those achieved with argon and krypton. Initially 40 fs, 800 nm, 120 μJ pulses were compressed to few optical cycles duration.

View Article and Find Full Text PDF

Plasmonic Au nanoparticle (NP)-loaded hierarchical hollow porous TiO spheres are designed and synthesized with the purpose of enhancing the overall catalytic activity by introducing the Au plasmonic effect into the system, where Au NPs themselves are catalytically active. The constructed nanohybrid exhibits both high activity in 4-nitrophenol reduction, compared to all of the previously reported Au-based catalysts, and high selectivity. The synergy of the inherent catalytic property of Au NPs and the plasmonic effect (mainly via hot electron transfer) under irradiation is confirmed by a series of control experiments.

View Article and Find Full Text PDF

We present a straightforward route for extreme pulse compression, which relies on moderately driving self-phase modulation (SPM) over an extended propagation distance. This avoids that other detrimental nonlinear mechanisms take over and deteriorate the SPM process. The long propagation is obtained by means of a hollow-core fiber (HCF), up to 6 m in length.

View Article and Find Full Text PDF

Phonons (quanta of collective vibrations) are a major source of energy dissipation and drive some of the most relevant properties of materials. In nanotechnology, phonons severely affect light emission and charge transport of nanodevices. While the phonon response is conventionally considered an inherent property of a nanomaterial, here we show that the dipole-active phonon resonance of semiconducting (CdS) nanocrystals can be drastically reshaped inside a terahertz plasmonic nanocavity, via the phonon strong coupling with the cavity vacuum electric field.

View Article and Find Full Text PDF

We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.

View Article and Find Full Text PDF

Recently, surface plasmon resonance (SPR) effects have been widely used to construct photocatalysts which are active in the visible spectral region. Such plasmonic photocatalysts usually comprise a semiconductor material transparent in the visible range (such as TiO2) and plasmonic nano-objects (e.g.

View Article and Find Full Text PDF

Electric breakdown in air occurs for electric fields exceeding 34 kV/cm and results in a large current surge that propagates along unpredictable trajectories. Guiding such currents across specific paths in a controllable manner could allow protection against lightning strikes and high-voltage capacitor discharges. Such capabilities can be used for delivering charge to specific targets, for electronic jamming, or for applications associated with electric welding and machining.

View Article and Find Full Text PDF

Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.

View Article and Find Full Text PDF

We demonstrate, by generating a THz electric field directly within the guiding structure, an active two-wire waveguide operating in the terahertz (THz) range of wavelengths. We compare the energy throughput of the active configuration with that of a radiatively coupled semi-large photoconductive antenna, in which the radiation is generated outside the waveguide, reporting a 60 times higher energy throughput for the same illumination power and applied voltage. This novel, active waveguide design allows to have efficient coupling of the THz radiation in a dispersion-less waveguide without the need of involved radiative coupling geometries.

View Article and Find Full Text PDF

We report an integrated photon pair source based on a CMOS-compatible microring resonator that generates multiple, simultaneous, and independent photon pairs at different wavelengths in a frequency comb compatible with fiber communication wavelength division multiplexing channels (200 GHz channel separation) and with a linewidth that is compatible with quantum memories (110 MHz). It operates in a self-locked pump configuration, avoiding the need for active stabilization, making it extremely robust even at very low power levels.

View Article and Find Full Text PDF

We present a simple method that is able to predict the resonant frequencies of a metallic conical nanoantenna. The calculation is based on an integral relation that takes into account the dependence of the effective refractive index of the plasmonic mode on the cone radius. Numerical simulations retrieving the near field properties of nanocones with different lengths are also performed for comparison.

View Article and Find Full Text PDF

We report a novel geometry for OPOs based on nonlinear microcavity resonators. This approach relies on a self-locked scheme that enables OPO emission without the need for thermal locking of the pump laser to the microcavity resonance. By exploiting a CMOS-compatible microring resonator, we achieve oscillation featured by a complete absence of "shutting down", i.

View Article and Find Full Text PDF

We investigate the spatially and temporally resolved four-wave mixing of terahertz (THz) fields and optical pulses in large-bandgap dielectrics, such as diamond. We show that it is possible to perform beam profiling and space-time resolved mapping of THz fields by encoding the spatial information into an optical signal, which can then be recorded by a standard CCD camera.

View Article and Find Full Text PDF

Resonant dipole nanoantennas promise to considerably improve the capabilities of terahertz spectroscopy, offering the possibility of increasing its sensitivity through local field enhancement, while in principle allowing unprecedented spatial resolutions, well below the diffraction limit. Here, we investigate the resonance properties of ordered arrays of terahertz dipole nanoantennas, both experimentally and through numerical simulations. We demonstrate the tunability of this type of structures, in a range (∼1-2 THz) that is particularly interesting and accessible by means of standard zinc telluride sources.

View Article and Find Full Text PDF