Accumulation of senescent endothelial cells (ECs) with age is a pivotal driver of cardiovascular diseases in aging. However, little is known about the mechanisms and signaling pathways that regulate EC senescence. In this report, we delineate a previously unrecognized role of aquaporin 1 (AQP1) in orchestrating extracellular hydrogen peroxide (HO)-induced cellular senescence in aortic ECs.
View Article and Find Full Text PDFStudying human skin biology can aid in comprehending the pathophysiology of skin diseases and developing novel cell-based therapies, including tissue engineering approaches. This chapter provides a comprehensive guide of methods to determine human skin samples from the perspective of their cellular compositions. We describe as useful technique the histological analysis of tissue sections.
View Article and Find Full Text PDFPrenatal surgery for the treatment of spina bifida (myelomeningocele, MMC) significantly enhances the neurological prognosis of the patient. To ensure better protection of the spinal cord by large defects, the application of skin grafts produced with cells gained from the amniotic fluid is presently studied. In order to determine the most appropriate cells for this purpose, we tried to shed light on the extremely complex amniotic fluid cellular composition in healthy and MMC pregnancies.
View Article and Find Full Text PDFKeratinocytes are the predominant cell type of skin epidermis. Through the programmed process of differentiation, they form a cornified envelope that provides a physical protective barrier against harmful external environment. Keratins are major structural proteins of keratinocytes that together with actin filaments and microtubules form the cytoskeleton of these cells.
View Article and Find Full Text PDFMicrotia is a congenital condition of abnormal development of the outer ear. Tissue engineering of the ear is an alternative treatment option for microtia patients. However, for this approach, the identification of high regenerative cartilage progenitor cells is of vital importance.
View Article and Find Full Text PDFBackground: CD146 is a cell adhesion molecule whose expression profile in human skin has not yet been elucidated. Here, we characterize CD146 expression pattern in human skin, in particular in blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), which constitute human dermal microvascular endothelial cells (HDMECs), as well as in perivascular cells.
Results: We demonstrated that CD146 is a specific marker of BECs, but not of LECs.
The evidence for fibroblast heterogeneity is continuously increasing, and recent work has shed some light on the existence of different sub-populations of fibroblasts in the human skin. Although we now have a more precise understanding of their distribution in the human body, we do not know whether their properties are predictive of where these cells derive from or whether these sub-types have functional consequences. In this study, we employed single-cell transcriptomics (10X Genomics) to study gene expression and segregate fibroblast sub-populations based on their genetic signature.
View Article and Find Full Text PDFThe basal layer of human interfollicular epidermis has been described to harbour both quiescent keratinocyte stem cells and a transit amplifying cell population that maintains the suprabasal epidermal layers. We performed immunofluorescence analyses and revealed that the main proliferative keratinocyte pool in vivo resides suprabasally. We isolated from the human epidermis two distinct cell populations, the basal and the suprabasal keratinocytes, according to the expression of integrin β4 (iβ4).
View Article and Find Full Text PDFExtensive availability of engineered autologous dermo-epidermal skin substitutes (DESS) with functional and structural properties of normal human skin represents a goal for the treatment of large skin defects such as severe burns. Recently, a clinical phase I trial with this type of DESS was successfully completed, which included patients own keratinocytes and fibroblasts. Yet, two important features of natural skin were missing: pigmentation and vascularization.
View Article and Find Full Text PDFAn intricate problem during open human fetal surgery for spina bifida regards back skin closure, particularly in those cases where the skin defect is much too large for primary closure. We hypothesize that tissue engineering of fetal skin might provide an adequate autologous skin substitute for in utero application in such situations. Eight sheep fetuses of four time-mated ewes underwent fetoscopic skin biopsy at 65 days of gestation.
View Article and Find Full Text PDFPurpose: Open fetal spina bifida repair has become a novel clinical standard of care. In very large spina bifida lesions, the skin defect cannot be covered primarily, asking for alternative solutions. We hypothesize that amniotic fluid stem cells (AFSC) could be differentiated into keratinocytes that could then be used to bioengineer autologous skin usable for in utero back coverage.
View Article and Find Full Text PDFIt has been shown in vitro that melanocyte proliferation and function in palmoplantar skin is regulated by mesenchymal factors derived from fibroblasts. In this study, we investigated in vivo the influence of mesenchymal-epithelial interactions in human tissue-engineered skin substitutes reconstructed from palmar- and nonpalmoplantar-derived fibroblasts. Tissue-engineered dermo-epidermal analogs based on collagen type I hydrogels were populated with either human palmar or nonpalmoplantar fibroblasts and seeded with human nonpalmoplantar-derived melanocytes and keratinocytes.
View Article and Find Full Text PDFIn our previous work, we showed that human sweat gland-derived epithelial cells represent an alternative source of keratinocytes to grow a near normal autologous epidermis. The role of subtypes of sweat gland cells in epidermal regeneration and maintenance remained unclear. In this study, we compare the regenerative potential of both secretory and absorptive sweat gland cell subpopulations.
View Article and Find Full Text PDFPurpose: It is unclear whether dermal fibroblasts are indispensable key players for tissue engineering of dermo-epidermal skin analogs. In this experimental study, we wanted to test the hypothesis that tonsil-derived mesenchymal cells can assume the role of dermal fibroblasts when culturing pigmented skin analogs for transplantation.
Methods: Mesenchymal cells from excised tonsils and keratinocytes, melanocytes, and fibroblasts from skin biopsies were isolated, cultured, and expanded.
Introduction: Autologous dermo-epidermal skin substitutes (DESS) generated in vitro represent a promising therapeutic means to treat full-thickness skin defects in clinical practice. A serious drawback with regard to acute patients is the relatively long production time of 3-4 weeks. With this experimental study we aimed to decrease the production time of DESS without compromising their quality.
View Article and Find Full Text PDFExtensive full-thickness skin loss, associated with deep burns or other traumata, represents a major clinical problem that is far from being solved. A promising approach to treat large skin defects is the use of tissue-engineered full-thickness skin analogues with nearly normal anatomy and function. In addition to excellent biological properties, such skin substitutes should exhibit optimal structural and mechanical features.
View Article and Find Full Text PDFPurpose: Tissue engineered skin substitutes are a promising tool to cover large skin defects, but little is known about reinnervation of transplants. In this experimental study, we analyzed the ingrowth of host peripheral nerve fibers into human tissue engineered dermo-epidermal skin substitutes in a rat model. Using varying cell types in the epidermal compartment, we wanted to assess the influence of epidermal cell types on reinnervation of the substitute.
View Article and Find Full Text PDFRecently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells.
View Article and Find Full Text PDFTissue engineering of clinically applicable dermo-epidermal skin substitutes is crucially dependent on the three-dimensional extracellular matrix, supporting the biological function of epidermal and dermal cells. This matrix essentially determines the mechanical stability of these substitutes to allow for safe and convenient surgical handling. Collagen type I hydrogels yield excellent biological functionality, but their mechanical weakness and their tendency to contract and degrade does not allow producing clinically applicable transplants of larger sizes.
View Article and Find Full Text PDFBackground: Extended full thickness skin defects still represent a considerable therapeutic challenge as ideal strategies for definitive autologous coverage are still not available. Tissue engineering of whole skin represents an equally attractive and ambitious novel approach. We have recently shown that laboratory-grown human skin analogues with near normal skin anatomy can be successfully transplanted on immuno-incompetent rats.
View Article and Find Full Text PDFBackground: Definitive and high-quality coverage of large and, in particular, massive skin defects remains a significant challenge in burn as well as plastic and reconstructive surgery because of donor site shortage. A novel and promising approach to overcome these problems is tissue engineering of skin. Clearly, before eventual clinical application, engineered skin substitutes of human origin must be grafted and then evaluated in animal models.
View Article and Find Full Text PDFEccrine sweat glands are generally considered to be a possible epidermal stem cell source. Here we compared the multilayered epithelia formed by epidermal keratinocytes and those formed by eccrine sweat gland cells. We demonstrated both in vitro and in vivo the capability of human eccrine sweat gland cells to form a stratified interfollicular epidermis substitute on collagen hydrogels.
View Article and Find Full Text PDFBackground/purpose: In a multi-project research line, we are currently testing whether a morphologically and functionally near normal epidermis can be cultured from human sweat gland (SG) cells and be used as a skin substitute. The present study focuses on the stratum corneum of the epidermis that assumes a vital barrier function for the skin. The main process in the formation of the cornified cell envelope in human epidermis, i.
View Article and Find Full Text PDFInitial take, development, and function of transplanted engineered tissue substitutes are crucially dependent on rapid and adequate blood perfusion. Therefore, the development of rapidly and efficiently vascularized tissue grafts is vital for tissue engineering and regenerative medicine. Here we report on the construction of a network of highly organotypic capillaries in engineered tissue substitutes.
View Article and Find Full Text PDFOur aim was to investigate the role of filamin cleavage and protein tyrosine phosphorylation in shear-stress-induced platelet microparticle formation and of its suppression by the monoclonal antibody (mAb) Ib-23 directed against GPIbalpha. PPACK-anticoagulated or EDTA-anticoagulated platelet-rich plasma or washed platelets were exposed to high shear stress (5000 s-1 for 5 min) in the presence of antagonists of GP Ibalpha (mAb Ib-23), of GP IIb/IIIa (abciximab) and their combination. We assessed the generation of microparticle by flow cytometry, the filamin cleavage and the protein tyrosine phosphorylation by western blotting.
View Article and Find Full Text PDF