Proc Math Phys Eng Sci
February 2018
In this paper, we exploit some results in the theory of irreversible phenomena to address the study of quasi-static brittle fracture propagation in a two-dimensional isotropic continuum. The elastic strain energy density of the body has been assumed to be geometrically nonlinear and to depend on the strain gradient. Such generalized continua often arise in the description of microstructured media.
View Article and Find Full Text PDFIn this paper, we propose the first estimate of some elastic parameters of the relaxed micromorphic model on the basis of real experiments of transmission of longitudinal plane waves across an interface separating a classical Cauchy material (steel plate) and a phononic crystal (steel plate with fluid-filled holes). A procedure is set up in order to identify the parameters of the relaxed micromorphic model by superimposing the experimentally based profile of the reflection coefficient (plotted as function of the wave-frequency) with the analogous profile obtained via numerical simulations. We determine five out of six constitutive parameters which are featured by the relaxed micromorphic model in the isotropic case, plus the determination of the micro-inertia parameter.
View Article and Find Full Text PDF