Plants continuously face various environmental stressors throughout their lifetime. To be able to grow and adapt in different environments, they developed specialized tissues that allowed them to maintain a protected yet interconnected body. These tissues undergo specific primary and secondary cell wall modifications that are essential to ensure normal plant growth, adaptation and successful land colonization.
View Article and Find Full Text PDFAlcohol dehydrogenases (ADHs) are a group of zinc-binding enzymes belonging to the medium-length dehydrogenase/reductase (MDR) protein superfamily. In plants, these enzymes fulfill important functions involving the reduction of toxic aldehydes to the corresponding alcohols (as well as catalyzing the reverse reaction, i.e.
View Article and Find Full Text PDFN-terminal cysteine oxidases (NCOs) use molecular oxygen to oxidise the amino-terminal cysteine of specific proteins, thereby initiating the proteolytic N-degron pathway. To expand the characterisation of the plant family of NCOs (plant cysteine oxidases [PCOs]), we performed a phylogenetic analysis across different taxa in terms of sequence similarity and transcriptional regulation. Based on this survey, we propose a distinction of PCOs into two main groups.
View Article and Find Full Text PDFSynthetic biology approaches to engineer light-responsive systems are widely used, but their applications in plants are still limited due to the interference with endogenous photoreceptors and the intrinsic requirement of light for photosynthesis. Cyanobacteria possess a family of soluble carotenoid-associated proteins named orange carotenoid proteins (OCPs) that, when activated by blue-green light, undergo a reversible conformational change that enables the photoprotection mechanism that occurs on the phycobilisome. Exploiting this system, we developed a chloroplast-localized synthetic photoswitch based on a protein complementation assay where two nanoluciferase fragments were fused to separate polypeptides corresponding to the OCP2 domains.
View Article and Find Full Text PDFDue to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome.
View Article and Find Full Text PDFOff-pump direct coronary artery bypass grafting through a left anterior small thoracotomy is widely utilized for minimally invasive myocardial revascularization. More recently, a novel technique for transapical off-pump mitral valve repair with the NeoChord device is demonstrating its efficacy. This report describes a case of an 84-year-old male patient with coronary artery disease involving the left anterior descending coronary artery and acute severe mitral regurgitation secondary to posterior leaflet flail who underwent both off-pump coronary artery bypass and mitral valve repair with the transapical implantation of artificial chordae using the NeoChord DS 1000 system through the same anterolateral small thoracotomy.
View Article and Find Full Text PDF