[This corrects the article on p. 474 in vol. 10, PMID: 27857680.
View Article and Find Full Text PDFIn this paper, we present an alternative approach to perform spike sorting of complex brain signals based on spiking neural networks (SNN). The proposed architecture is suitable for hardware implementation by using resistive random access memory (RRAM) technology for the implementation of synapses whose low latency (<1μs) enables real-time spike sorting. This offers promising advantages to conventional spike sorting techniques for brain-computer interfaces (BCI) and neural prosthesis applications.
View Article and Find Full Text PDFResistive switching (RS) based on the formation and rupture of conductive filament (CF) is promising in novel memory and logic device applications. Understanding the physics of RS and the nature of CF is of utmost importance to control the performance, variability and reliability of resistive switching memory (RRAM). Here, the RESET switching of HfO2-based RRAM was statistically investigated in terms of the CF conductance evolution.
View Article and Find Full Text PDF