We explore the application of machine learning (ML) techniques to forecast door-to-door waste collection, addressing the challenges in municipal solid waste (MSW) management. ML models offer a promising solution to optimize waste collection operations, especially amid growing urban populations and evolving waste generation rates. Leveraging comprehensive data from a northeastern Italian municipality, including various waste types, our study investigates ML algorithms' efficacy in predicting household waste collection requirements.
View Article and Find Full Text PDFMany neural networks for graphs are based on the graph convolution (GC) operator, proposed more than a decade ago. Since then, many alternative definitions have been proposed, which tend to add complexity (and nonlinearity) to the model. Recently, however, a simplified GC operator, dubbed simple graph convolution (SGC), which aims to remove nonlinearities was proposed.
View Article and Find Full Text PDFGraph neural networks are receiving increasing attention as state-of-the-art methods to process graph-structured data. However, similar to other neural networks, they tend to suffer from a high computational cost to perform training. Reservoir computing (RC) is an effective way to define neural networks that are very efficient to train, often obtaining comparable predictive performance with respect to the fully trained counterparts.
View Article and Find Full Text PDF