Publications by authors named "Luca Mingarelli"

We investigate a mixture of two repulsively interacting superfluids with different constituent particle masses: m_{1}≠m_{2}. Solutions to the Gross-Pitaevskii equation for homogeneous infinite vortex lattices predict the existence of rich vortex lattice configurations, a number of which correspond to Platonic and Archimedean planar tilings. Some notable geometries include the snub-square, honeycomb, kagome, and herringbone lattice configurations.

View Article and Find Full Text PDF

We present an efficient framework to numerically treat infinite periodic vortex lattices in rotating superfluids described by the Gross-Pitaevskii theory. The commonly used split-step Fourier (SSF) spectral methods are inapplicable to such systems as the standard Fourier transform does not respect the boundary conditions mandated by the magnetic translation group. We present a generalisation of the SSF method which incorporates the correct boundary conditions by employing the so-called magnetic Fourier transform.

View Article and Find Full Text PDF