Wildland fires and windthrows represent relevant disturbances for forest ecosystems worldwide. In this context, especially for Italian catchments, the interaction between windthrows and changes in wildfire behaviour starting from ALS data processing is scarcely investigated. Therefore, this research aims to compute a multi-temporal analysis of the interaction between windthrows and wildfire behaviour in a forested area (Veneto region, northern Italy), recently affected by the renamed Vaia windstorm.
View Article and Find Full Text PDFLuminescent solar concentrators (LSCs) are spectral conversion devices offering interesting opportunities for the integration of photovoltaics into the built environment and portable systems. The Förster-resonance energy transfer (FRET) process can boost the optical response of LSCs by reducing energy losses typically associated to non-radiative processes occurring within the device under operation. In this work, a new class of FRET-based thin-film LSC devices is presented, in which the synthetic versatility of linear polyurethanes (PU) is exploited to control the photophysical properties and the device performance of the resulting LSCs.
View Article and Find Full Text PDFWindthrows seriously affect forest landscapes, causing several issues in hydrological and geomorphological terms. In this regard, Airborne Laser Scanning (ALS) topographic data recently increased the opportunity to investigate in detail physical processes at the catchment scale. Moreover, topographically based hydrological and geomorphological models allow quantifying runoff alteration due to windthrows-driven land cover changes and detect the occurrence of land degradative processes at the sub-catchment scale.
View Article and Find Full Text PDFA limitation of pooled CRISPR-Cas9 screens is the high false-positive rate in detecting essential genes arising from copy-number-amplified genomics regions. To solve this issue, we previously developed CRISPRcleanR: a computational method implemented as R/python package and in a dockerized version. CRISPRcleanR detects and corrects biased responses to CRISPR-Cas9 targeting in an unsupervised fashion, accurately reducing false-positive signals while maintaining sensitivity in identifying relevant genetic dependencies.
View Article and Find Full Text PDFThe present review summarizes the work carried out mostly in the last decade on iridium and ruthenium complexes bearing various perylene ligands, of particular interest for bioimaging, photodynamic therapy, and solar energy conversion. In these complexes, the absorption spectra and the electrochemical properties are those of the perylene subunit plus those of the metal moiety. In contrast, the emissions are completely changed with respect to perylenes considered alone.
View Article and Find Full Text PDFThree decades ago, dye-sensitized solar cells (DSSCs) emerged as a method for harnessing the energy of the sun and for converting it into electricity. Since then, a lot of work has been devoted to create better global photovoltaic efficiencies and long term stability. Among photosensitizers for DSSCs, thiocyanate-free ruthenium(II) complexes have gained increasing interest due to their better stability compared to conventional thiocyanate-based complexes, such as benchmark dyes N719 and Z907.
View Article and Find Full Text PDFOrganic room temperature persistent luminescence is a fascinating but still largely unexplored phenomenon. Cyclic-triimidazole and its halogenated (Br, I) derivatives have recently revealed as intriguing phosphors characterized by multifaceted emissive behavior including room temperature ultralong phosphorescence (RTUP) associated with the presence of H-aggregates in their crystal structure. Here, we move towards a multicomponent system by incorporating a fluoropyridinic fragment on the cyclic-triimidazole scaffold.
View Article and Find Full Text PDFWe propose a new type of photonic analog-to-digital converter (ADC), designed for high-resolution (>7 bit) and high sampling rates (scalable to tens of GS/s). It is based on encoding the input analog voltage signal onto the phase of an optical pulse stream originating from a mode-locked laser, and uses spatial oversampling as a means to improve the conversion resolution. This paper describes the concept of spatial oversampling and draws its similarities to the commonly used temporal oversampling.
View Article and Find Full Text PDF