Publications by authors named "Luca Mascheroni"

Structured illumination can reject out-of-focus signal from a sample, enabling high-speed and high-contrast imaging over large areas with widefield detection optics. However, this optical sectioning technique is currently limited by image reconstruction artefacts and poor performance at low signal-to-noise ratios. We combine multicolour interferometric pattern generation with machine learning to achieve high-contrast, real-time reconstruction of image data that is robust to background noise and sample motion.

View Article and Find Full Text PDF

Most patients with COVID-19 in the intensive care unit develop an acute respiratory distress syndrome characterized by severe hypoxemia, decreased lung compliance, and high vascular permeability. Activation of the complement system is a hallmark of moderate and severe COVID-19, with abundant deposition of complement proteins in inflamed tissue and on the endothelium during COVID-19. Using a transgenic mouse model of SARS-CoV-2 infection, we assessed the therapeutic utility of an inhibitory antibody (HG4) targeting MASP-2, a key enzyme in the lectin pathway.

View Article and Find Full Text PDF

Structured Illumination Microscopy, SIM, is one of the most powerful optical imaging methods available to visualize biological environments at subcellular resolution. Its limitations stem from a difficulty of imaging in multiple color channels at once, which reduces imaging speed. Furthermore, there is substantial experimental complexity in setting up SIM systems, preventing a widespread adoption.

View Article and Find Full Text PDF

Despite being the target of extensive research efforts due to the COVID-19 (coronavirus disease 2019) pandemic, relatively little is known about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within cells. We investigate and characterize the tightly orchestrated virus assembly by visualizing the spatiotemporal dynamics of the four structural SARS-CoV-2 proteins at high resolution. The nucleoprotein is expressed first and accumulates around folded endoplasmic reticulum (ER) membranes in convoluted layers that contain viral RNA replication foci.

View Article and Find Full Text PDF

Herpesviruses are large and complex viruses that have a long history of coevolution with their host species. One important factor in the virus-host interaction is the alteration of intracellular morphology during viral replication with critical implications for viral assembly. However, the details of this remodeling event are not well understood, in part because insufficient tools are available to deconstruct this highly heterogeneous process.

View Article and Find Full Text PDF

Immunofluorescence microscopy is routinely used in the diagnosis of and research on renal impairments. However, this highly specific technique is restricted in its maximum resolution to about 250 nm in the lateral and 700 nm in the axial directions and thus not sufficient to investigate the fine subcellular structure of the kidney's glomerular filtration barrier. In contrast, electron microscopy offers high resolution, but this comes at the cost of poor preservation of immunogenic epitopes and antibody penetration alongside a low throughput.

View Article and Find Full Text PDF

Expansion microscopy is a sample preparation technique that enables the optical imaging of biological specimens at super-resolution owing to their physical magnification, which is achieved through water-absorbing polymers. The technique uses readily available chemicals and does not require sophisticated equipment, thus offering super-resolution to laboratories that are not microscopy-specialised. Here we present a protocol combining sample expansion with light sheet microscopy to generate high-contrast, high-resolution 3D reconstructions of whole virus-infected cells.

View Article and Find Full Text PDF

Strategies for endosomal escape and access to the cell nucleus are highly sought for nanocarriers to deliver their load efficiently following endocytosis. In this work, we have studied the uptake and intracellular trafficking of a polycationic polyamidoamine (PAA) endowed with a luminescent Ru complex, Ru-PhenAN, that shows unique trafficking to the cell nucleus. Live cell imaging confirmed the capacity of this polymer to access the nucleus, excluding artifacts due to cell fixation, and clarified that the mechanism of escape is light-triggered and relies on the presence of the Ru complexes and their capacity to absorb light and act as photosensitizers for singlet oxygen production.

View Article and Find Full Text PDF

In this work, we report the synthesis of [Ru(phen)]-based complexes and their use as photosensitizers for photodynamic therapy (PDT), a treatment of pathological conditions based on the photoactivation of bioactive compounds, which are not harmful in the absence of light irradiation. Of these complexes, Ru-PhenISA and Ru-PhenAN are polymer conjugates containing less than 5%, (on a molar basis), photoactive units. Their performance is compared with that of a small [Ru(phen)] compound, [Ru(phen)BAP](OTf) (BAP = 4-(4'-aminobutyl)-1,10-phenanthroline, OTf = triflate anion), used as a model of the photoactive units.

View Article and Find Full Text PDF

A new versatile thiophene derivative exomethylene-3,4-ethylenedioxythiophene (emEDOT) is introduced. The molecule can be straightforwardly prepared in two steps from commercially available derivatives and enables facile further derivatization through both acid catalyzed additions of alcohols and standard thiol-ene click chemistry. The preparation of electrochromic materials and of an electrochemical avidine sensor is shown by the oxidative polymerizations of several functionalized EDOT monomers straightforwardly prepared from emEDOT.

View Article and Find Full Text PDF