The loss of a hand disrupts the sophisticated neural pathways between the brain and the hand, severely affecting the level of independence of the patient and the ability to carry out daily work and social activities. Recent years have witnessed a rapid evolution of surgical techniques and technologies aimed at restoring dexterous motor functions akin to those of the human hand through bionic solutions, mainly relying on probing of electrical signals from the residual nerves and muscles. Here, we report the clinical implementation of an interface aimed at achieving this goal by exploiting muscle deformation, sensed through passive magnetic implants: the myokinetic interface.
View Article and Find Full Text PDFIn this paper we present CHARLES (C++ pHotonic Aware neuRaL nEtworkS), a C++ library aimed at providing a flexible tool to simulate the behavior of Photonic-Aware Neural Network (PANN). PANNs are neural network architectures aware of the constraints due to the underlying photonic hardware, mostly in terms of low equivalent precision of the computations. For this reason, CHARLES exploits fixed-point computations for inference, while it supports both floating-point and fixed-point numerical formats for training.
View Article and Find Full Text PDFRisk-taking behaviors of adult bedridden patients in neurosurgery are frequent, however little analyzed. We aimed to estimate from the literature and our clinical experience the incidence of the different clinical pictures. Risk-taking behaviors seem to be more frequent than reported.
View Article and Find Full Text PDF