Publications by authors named "Luca Leuzzi"

This study introduces a new digital-micromirror based binary-phase wavefront shaping technique, which allows the measurement of the full coupling matrix of a disordered medium without a reference and enables to focusing transmitted light. The coupling matrix takes on a bi-dyadic structure, similar to a Hopfield memory matrix containing two memory patterns. Sequential wavefront optimization in this configuration often stalls due to a rough intensity landscape, resulting in a non-optimal state.

View Article and Find Full Text PDF

Physical mechanisms of phase separation in living systems play key physiological roles and have recently been the focus of intensive studies. The strongly heterogeneous nature of such phenomena poses difficult modeling challenges that require going beyond mean-field approaches based on postulating a free energy landscape. The pathway we take here is to calculate the partition function starting from microscopic interactions by means of cavity methods, based on a tree approximation for the interaction graph.

View Article and Find Full Text PDF

In ultrafast multimode lasers, mode locking is implemented by means of saturable absorbers or modulators, allowing for very short pulses. This occurs because of nonlinear interactions of modes with well equispaced frequencies. Though theory predicts that, in the absence of any device, mode locking would occur in random lasers, this has never been demonstrated so far.

View Article and Find Full Text PDF

Network models provide a general representation of inter-connected system dynamics. This ability to connect systems has led to a proliferation of network models for economic productivity analysis, primarily estimated non-parametrically using Data Envelopment Analysis (DEA). While network DEA models can be used to measure system performance, they lack a statistical framework for inference, due in part to the complex structure of network processes.

View Article and Find Full Text PDF

We discuss a phase transition in spin glass models that have been rarely considered in the past, namely, the phase transition that may take place when two real replicas are forced to be at a larger distance (i.e., at a smaller overlap) than the typical one.

View Article and Find Full Text PDF

The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers.

View Article and Find Full Text PDF

The short- and long-time dynamics of model systems undergoing a glass transition with apparent inversion of Kauzmann and dynamical arrest glass transition lines is investigated. These models belong to the class of the spherical mean-field approximation of a spin-1 model with p-body quenched disordered interaction, with p>2, termed spherical Blume-Emery-Griffiths models. Depending on temperature and chemical potential the system is found in a paramagnetic or in a glassy phase and the transition between these phases can be of a different nature.

View Article and Find Full Text PDF

The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities.

View Article and Find Full Text PDF

Because of the huge commercial importance of granular systems, the second-most used material in industry after water, intersecting the industry in multiple trades, like pharmacy and agriculture, fundamental research on grain-like materials has received an increasing amount of attention in the last decades. In photonics, the applications of granular materials have been only marginally investigated. We report the first phase-diagram of a granular as obtained by laser emission.

View Article and Find Full Text PDF

Granular materials have been studied for decades, driven by industrial and technological applications. These very simple systems, composed of agglomerations of mesoscopic particles, are characterized, in specific regimes, by a large number of metastable states and an extreme sensitivity (e.g.

View Article and Find Full Text PDF

We analyze the Blume-Emery-Griffiths-Capel model with disordered interaction that displays the inverse freezing phenomenon. The behavior of this spin-1 model in crystal field is studied throughout the phase diagram, and the transition lines are computed using the full replica symmetry breaking ansatz. We compare the results both with the formulation of the same model in terms of Ising spins on lattice gas, where no reentrance takes place, and with the model with generalized spin variables recently introduced by Schupper and Shnerb [Phys.

View Article and Find Full Text PDF