The extremophile bacterium D. radiodurans boasts a distinctive cell envelope characterized by the regular arrangement of three protein complexes. Among these, the Type II Secretion System (T2SS) stands out as a pivotal structural component.
View Article and Find Full Text PDFDeinococcus radiodurans is known for its remarkable ability to withstand harsh stressful conditions. The outermost layer of its cell envelope is a proteinaceous coat, the S-layer, essential for resistance to and interactions with the environment. The S-layer Deinoxanthin-binding complex (SDBC), one of the main units of the characteristic multilayered cell envelope of this bacterium, protects against environmental stressors and allows exchanges with the environment.
View Article and Find Full Text PDFThe radiation-resistant bacterium Deinococcus radiodurans is known as the world's toughest bacterium. The S-layer of D. radiodurans, consisting of several proteins on the surface of the cellular envelope and intimately associated with the outer membrane, has therefore been useful as a model for structural and functional studies.
View Article and Find Full Text PDFIn the last decades, the colonization of Mediterranean Europe and of other temperate regions by Aedes albopictus created an unprecedented nuisance problem in highly infested areas and new public health threats due to the vector competence of the species. The Sterile Insect Technique (SIT) and the Incompatible Insect Technique (IIT) are insecticide-free mosquito-control methods, relying on mass release of irradiated/manipulated males, able to complement existing and only partially effective control tools. The validation of these approaches in the field requires appropriate experimental settings, possibly isolated to avoid mosquito immigration from other infested areas, and preliminary ecological and entomological data.
View Article and Find Full Text PDFMosquitoes represent a considerable nuisance and are actual/potential vectors of human diseases in Europe. Costly and labour-intensive entomological monitoring is needed to correct planning of interventions aimed at reducing nuisance and the risk of pathogen transmission. The widespread availability of mobile phones and of massive Internet connections opens the way to the contribution of citizen in complementing entomological monitoring.
View Article and Find Full Text PDF