Reversing CD8 T cell dysfunction is crucial in treating chronic hepatitis B virus (HBV) infection, yet specific molecular targets remain unclear. Our study analyzed co-signaling receptors during hepatocellular priming and traced the trajectory and fate of dysfunctional HBV-specific CD8 T cells. Early on, these cells upregulate PD-1, CTLA-4, LAG-3, OX40, 4-1BB, and ICOS.
View Article and Find Full Text PDFBackground & Aims: Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells.
View Article and Find Full Text PDFVaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent.
View Article and Find Full Text PDFAlongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown.
View Article and Find Full Text PDFHepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs).
View Article and Find Full Text PDFChronic hepatitis B (CHB) is a major worldwide public health problem and novel anti-HBV therapies preventing liver disease progression to cirrhosis and hepatocellular carcinoma are urgently needed. Over the last several years, capsid assembly modulators (CAM) have emerged as clinically effective anti-HBV agents which can inhibit HBV replication in CHB patients. As part of a drug discovery program aimed at obtaining novel CAM endowed with high in vitro and in vivo antiviral activity, we identified a novel series of sulfamoylbenzamide (SBA) derivatives.
View Article and Find Full Text PDFHepatitis B virus (HBV) causes either acute or chronic liver diseases. Chronic hepatitis B (CHB) often progresses to the development of cirrhosis and hepatocellular carcinoma. As HBV is extremely noncytopathic, immunological events play a key role in the infection outcome.
View Article and Find Full Text PDFGroup 1 innate lymphoid cells (ILCs), which comprise both natural killer (NK) cells and ILC1s, are important innate effectors that can also positively and negatively influence adaptive immune responses. The latter function is generally ascribed to the ability of NK cells to recognize and kill activated T cells. Here, we used multiphoton intravital microscopy in mouse models of hepatitis B to study the intrahepatic behavior of group 1 ILCs and their cross-talk with hepatitis B virus (HBV)-specific CD8 T cells.
View Article and Find Full Text PDFThe development of a tractable small animal model faithfully reproducing human coronavirus disease 2019 pathogenesis would arguably meet a pressing need in biomedical research. Thus far, most investigators have used transgenic mice expressing the human ACE2 in epithelial cells (K18-hACE2 transgenic mice) that are intranasally instilled with a liquid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suspension under deep anesthesia. Unfortunately, this experimental approach results in disproportionate high central nervous system infection leading to fatal encephalitis, which is rarely observed in humans and severely limits this model’s usefulness.
View Article and Find Full Text PDFThe COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle.
View Article and Find Full Text PDFKupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8 T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8 T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells.
View Article and Find Full Text PDFHepatitis B virus (HBV) is a non-cytopathic, hepatotropic virus with the potential to cause a persistent infection, ultimately leading to cirrhosis and hepatocellular carcinoma. Over the past four decades, the basic principles of HBV gene expression and replication as well as the viral and host determinants governing infection outcome have been largely uncovered. Whereas HBV appears to induce little or no innate immune activation, the adaptive immune response mediates both viral clearance as well as liver disease.
View Article and Find Full Text PDFAntibody-mediated clearance of hepatitis B surface antigen (HBsAg) from the circulation of chronically infected patients (i.e., seroconversion) is usually associated with increased HBV-specific T cell responsiveness.
View Article and Find Full Text PDFThe liver is organized in hexagonal functional units - termed lobules - characterized by a rather peculiar blood microcirculation, due to the presence of a tangled network of capillaries - termed sinusoids. A better understanding of the hemodynamics that governs liver microcirculation is relevant to clinical and biological studies aimed at improving our management of liver diseases and transplantation. Herein, we built a CFD model of a 3D sinusoidal network, based on in vivo images of a physiological mouse liver obtained with a 2-photon microscope.
View Article and Find Full Text PDFSeveral lines of evidence indirectly suggest that antigenic stimulation through the B-cell receptor (BCR) supports chronic lymphocytic leukemia (CLL) development. In addition to self-antigens, a number of microbial antigens have been proposed to contribute to the selection of the immunoglobulins expressed in CLL. How pathogen-specific BCRs drive CLL development remains, however, largely unexplored.
View Article and Find Full Text PDFBackground & Aims: Besides secreting pro-inflammatory cytokines, chemokines and effector molecules, effector CD8 T cells that arise upon acute infection with certain viruses have been shown to produce the regulatory cytokine interleukin (IL)-10 and, therefore, contain immunopathology. Whether the same occurs during acute hepatitis B virus (HBV) infection and role that IL-10 might play in liver disease is currently unknown.
Methods: Mouse models of acute HBV pathogenesis, as well as chimpanzees and patients acutely infected with HBV, were used to analyse the role of CD8 T cell-derived IL-10 in liver immunopathology.
Antibodies are critical for protection against viral infections. However, several viruses, such as lymphocytic choriomeningitis virus (LCMV), avoid the induction of early protective antibody responses by poorly understood mechanisms. Here we analyzed the spatiotemporal dynamics of B cell activation to show that, upon subcutaneous infection, LCMV-specific B cells readily relocate to the interfollicular and T cell areas of the draining lymph node where they extensively interact with CD11bLy6C inflammatory monocytes.
View Article and Find Full Text PDFColorectal cancer (CRC) metastatic dissemination to the liver is one of the most life-threatening malignancies in humans and represents the leading cause of CRC-related mortality. Herein, we adopted a gene transfer strategy into mouse hematopoietic stem/progenitor cells to generate immune-competent mice in which TEMs-a subset of Tie2(+) monocytes/macrophages found at peritumoral sites-express interferon-alpha (IFNα), a pleiotropic cytokine with anti-tumor effects. Utilizing this strategy in mouse models of CRC liver metastasis, we show that TEMs accumulate in the proximity of hepatic metastatic areas and that TEM-mediated delivery of IFNα inhibits tumor growth when administered prior to metastasis challenge as well as on established hepatic lesions, improving overall survival.
View Article and Find Full Text PDFThe host range of hepatitis B virus (HBV) is limited to humans and chimpanzees. As discussed in the literature, numerous studies in humans and chimpanzees have generated a great deal of information on the mechanisms that cause viral clearance, viral persistence, and disease pathogenesis during acute or chronic HBV infection. Relevant pathogenetic studies have also been performed in those few species representing natural hosts of hepadnaviruses that are related to HBV, such as the woodchuck hepatitis virus and the duck hepatitis virus.
View Article and Find Full Text PDFHepatitis B virus (HBV) is a noncytopathic, hepatotropic, double-stranded DNA virus that causes acute and chronic hepatitis. Although HBV does not induce a measurable innate immune response in the infected liver, the outcome of infection is determined by the kinetics, breadth, vigor, trafficking, and effector functions of HBV-specific adaptive T cell responses, and the development of neutralizing antibodies. Dysregulation of one or more of these events leads to persistent HBV infection and a variably severe chronic necroinflammatory liver disease that fosters the development of hepatocellular carcinoma.
View Article and Find Full Text PDF