Publications by authors named "Luca Gozzelino"

Article Synopsis
  • - Epilepsy is a common neurological disorder, with focal epilepsy being the most prevalent, yet the genetic factors contributing to it are not fully understood.
  • - The study identifies that rare genetic mutations in the PIK3C2B gene disrupt lipid signaling, which in turn causes problems in synthesizing a specific lipid, leading to excessive activation of mTORC1 and heightened neuronal excitability.
  • - Targeting mTORC1 with inhibitors in mutant mice showed promise in preventing seizures, suggesting a new potential treatment strategy for certain patients with focal epilepsy.
View Article and Find Full Text PDF

Objective: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with limited therapeutic options. However, metabolic adaptation to the harsh PDAC environment can expose liabilities useful for therapy. Targeting the key metabolic regulator mechanistic target of rapamycin complex 1 (mTORC1) and its downstream pathway shows efficacy only in subsets of patients but gene modifiers maximising response remain to be identified.

View Article and Find Full Text PDF

Background & Aims: Acinar to ductal metaplasia is the prerequisite for the initiation of Kras-driven pancreatic ductal adenocarcinoma (PDAC), and candidate genes regulating this process are emerging from genome-wide association studies. The adaptor protein p130Cas emerged as a potential PDAC susceptibility gene and a Kras-synthetic lethal interactor in pancreatic cell lines; however, its role in PDAC development has remained largely unknown.

Methods: Human PDAC samples and murine Kras-dependent pancreatic cancer models of increasing aggressiveness were used.

View Article and Find Full Text PDF

The phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) are central regulators of glycolysis, cancer metabolism, and cancer cell proliferation. At the molecular level, PI3K signaling involves the generation of the second messenger lipids phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]. There is increasing evidence that PI(3,4)P2 is not only the waste product for the removal of PI(3,4,5)P3 but can also act as a signaling molecule.

View Article and Find Full Text PDF

Pancreatic cancer is the fourth most common cause of cancer-related mortality, with a dismal prognosis that has changed little over the past few decades. Despite extensive efforts in understanding the oncogenetics of this pathology, pancreatic cancer remained largely elusive. One of the main characteristics of pancreatic cancer is the reduced level of oxygen and nutrient perfusion, caused by the new matrix formation, through the activation of stromal cells (desmoplasia).

View Article and Find Full Text PDF

Phosphorylation of inositol phospholipids by the family of phosphoinositide 3-kinases (PI3Ks) is crucial in controlling membrane lipid composition and regulating a wide range of intracellular processes, which include signal transduction and vesicular trafficking. In spite of the extensive knowledge on class I PI3Ks, recent advances in the study of the three class II PI3Ks (PIK3C2A, PIK3C2B and PIK3C2G) reveal their distinct and non-overlapping cellular roles and localizations. By finely tuning membrane lipid composition in time and space among different cellular compartments, this class of enzymes controls many cellular processes, such as proliferation, survival and migration.

View Article and Find Full Text PDF

Directional transport of recycling cargo from early endosomes (EE) to the endocytic recycling compartment (ERC) relies on phosphatidylinositol 3-phosphate (PtdIns(3)P) hydrolysis and activation of the small GTPase Rab11. However, how these events are coordinated is yet unclear. By using a novel genetically-encoded FRET biosensor for Rab11, we report that generation of endosomal PtdIns(3)P by the clathrin-binding phosphoinositide 3-kinase class 2 alpha (PI3K-C2α) controls the activation of Rab11.

View Article and Find Full Text PDF