Computational fluid dynamics (CFD) was used to investigate cascade photobioreactors (cascade PBRs) with two different bottom configurations-flat and wavy-to establish the effect that fluid-flow regimes exert on the photosynthetic productivity of Chlorella sorokiniana. In the flat-bottom PBR, areal biomass productivities decreased from 6.8 to 4.
View Article and Find Full Text PDFObjectives: Temporomandibular disorders (TMDs), orthodontic diseases, and vision dysfunctions seem to be strictly related. The purpose of this study was to prove the relationship, to evaluate the prevalence and the distribution of vision defects in dysfunctional and orthodontic patients, and to establish the type of the relationship.
Materials And Methods: A total of 100 patients with TMDs were selected and studied through epidemiological analyses of the following factors: gnathological parameters (temporomandibular joint pathologies according to Diagnostic Criteria for Temporomandibular Disorders); occlusal and skeletal parameters (overjet, overbite, dental class, transversal discrepancies, and mandibular asymmetry); and orthoptic parameters (refractive defects and oculomotor diseases).
The green alga Haematococcus pluvialis, which accumulates astaxanthin at an optimal temperature of 20°C, was cultivated under temperatures of 20°C, 23.5°C, 27°C, and 30.5°C, in order to assess the effects on algal metabolism during the growth phase.
View Article and Find Full Text PDFBiological hydrogen production is being evaluated for use as a fuel, since it is a promising substitute for carbonaceous fuels owing to its high conversion efficiency and high specific energy content. The basic advantages of biological hydrogen production over other "green" energy sources are that it does not compete for agricultural land use, and it does not pollute, as water is the only by-product of the combustion. These characteristics make hydrogen a suitable fuel for the future.
View Article and Find Full Text PDFIn the past decade, H₂ production using the green microalga Chlamydomonas reinhardtii has been extensively studied under laboratory-scale photobioreactors, while information on outdoor cultures is still lacking. In this paper, the results of experiments conducted with sulfur-deprived cultures of C. reinhardtii carried out in a 50-L horizontal tubular photobioreactor are presented.
View Article and Find Full Text PDFIn the present investigation, a detailed biochemical analysis of the high H₂ producer D1 protein mutant strain L159I-N230Y of Chlamydomonas reinhardtii, carrying a double amino acid substitution, was made. The leucine residue L159 was replaced by isoleucine, and the N230 asparagine was replaced by tyrosine. The performance of this strain was compared to that of the cc124 strain.
View Article and Find Full Text PDFThis work aims to: (1) correlate photochemical activity and productivity, (2) characterize the flow pattern of culture layers and (3) determine a range of biomass densities for high productivity of the freshwater microalga Chlorella spp., grown outdoors in thin-layer cascade units. Biomass density, irradiance inside culture, pigment content and productivity were measured in the microalgae cultures.
View Article and Find Full Text PDFRelationships between light intensity and chlorophyll concentration on hydrogen production were investigated in a sulfur-deprived Chlamydomonas reinhardtii culture in a laboratory scale photobioreactor (PBR) equipped with two different stirring devices. In the first case, the culture was mixed using a conventional magnetic stir bar, while in the second it was mixed using an impeller equipped with five turbines. Experiments were carried out at 70 and 140 micromol photons m(-2) s(-1) in combination with chlorophyll concentrations of 12 and 24 mg L(-1).
View Article and Find Full Text PDF