This data article presents the dataset collected for selected organic pollutants in the framework of a larger research project aimed at assessing the effects of different environmental stressors (natural and anthropogenic) in sediments of the Lake of Cavazzo, a basin of glacial origin located in a seismically active region of the Italian Eastern Alps. Information relative to sampling strategy and operations, location of sampling sites, sedimentary chronological benchmarks, and profiles of RGB (Red-Green-Blue) color code determined from high resolution photos taken at cores CAV-04 and CAV-06 are reported, together with analytical data for 15 polycyclic aromatic hydrocarbons, 21 polychlorinated biphenyls' congeners (including the non-Aroclor CB-11), 14 polybrominated diphenyl ethers' congeners, and 22 organochlorine pesticides, whose concentrations were determined by Gas Chromatography coupled both to Low-Resolution and High-Resolution Mass Spectrometry. Interpretation of this dataset is fully discussed in the companion article by Pizzini et al.
View Article and Find Full Text PDFMicrofluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena.
View Article and Find Full Text PDFDespite considerable advances in cancer research and oncological treatments, the burden of the disease is still extremely high. While past research has been cancer cell centered, it is now clear that to understand tumors, the models that serve as a framework for research and therapeutic testing need to improve and integrate cancer microenvironment characteristics such as mechanics, architecture, and cell heterogeneity. Microfluidics is a powerful tool for biofabrication of cancer-relevant architectures given its capacity to manipulate cells and materials at very small dimensions and integrate varied living tissue characteristics.
View Article and Find Full Text PDFThe Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation - GEBCO Seabed 2030 Project supporting the goal of mapping the world's oceans by 2030.
View Article and Find Full Text PDFUnder the present climatic emergency, the environmental quality of freshwater reservoirs is an increasingly urgent topic as its deterioration threatens humans and ecosystems. It is evident that pollution by natural and anthropogenic contaminants must be avoided or reduced. The Lake of Cavazzo (NE Italy) is a natural perialpine basin which, from the mid-20th century, has sustained several anthropogenic impacts that added to the effects of the intense regional seismicity.
View Article and Find Full Text PDFExtracellular matrix (ECM)-based bioinks have been steadily gaining interest in the field of bioprinting to develop biologically relevant and functional tissue constructs. Herein, we propose the use of supercritical carbon dioxide (scCO) technology to extract the ECM components of cell-sheets that have shown promising results in creating accurate 3D microenvironments replicating the cell's own ECM, to be used in the preparation of bioinks. The ECM extraction protocol best fitted for cell sheets was defined by considering efficient DNA removal with a minor effect on the ECM.
View Article and Find Full Text PDFHuman tissues and organs are inherently heterogeneous, and their functionality is determined by the interplay between different cell types, their secondary architecture, and gradients of signalling molecules and metabolites. To mimic the dynamics of native tissues, perfusion bioreactors and microfluidic devices are widely used in tissue engineering (TE) applications for enhancing cell culture viability in the core of 3D constructs. Still, mostscreening methods for compound efficacy and toxicity assessment include cell or tissue exposure to constant and homogeneous compound concentrations over a defined testing period.
View Article and Find Full Text PDFThe present dataset was collected to evaluate the environmental stressors on a lacustrine basin in the Eastern Alps of glacial origin that has been affected in recent years by natural and anthropogenic events such as the construction of a hydroelectric power plant and a series of strong earthquakes during 1976-1977. We collected sediment cores in different sites from the lake margins to the depocenter and performed a multiproxy analysis of sediment sample to highlight lake stratigraphy and major changes occurring at a decadal scale (Polonia et al., [1]).
View Article and Find Full Text PDFEngineering complex tissues requires the use of advanced biofabrication techniques that allow the replication of the tissue's 3D microenvironment, architecture and cellular interactions. In the case of skin, the most successful strategies to introduce the complexity of hair follicle (HF) appendages have highlighted the importance of facilitating direct interaction between dermal papilla (DP) cells and keratinocytes (KCs) in organotypic skin models. In this work, we took advantage of microscopy-guided laser ablation (MGLA) to microfabricate a fibroblast-populated collagen hydrogel and create a subcompartment that guides the migration of KCs and lead their interaction with DP cells to recreate follicular structures.
View Article and Find Full Text PDFIntroduction: The dermal papilla (DP) represents the major regulatory entity within the hair follicle (HF), inducing hair formation and growth through reciprocal interactions with epithelial cells. However, human DP cells rapidly lose their hair inductive ability when cultured in an epithelium-deficient environment.
Objectives: To determine if the conditioned medium collected from interfollicular keratinocytes (KCs-CM) is capable of improving DP cell native properties and inductive phenotype.
The Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures.
View Article and Find Full Text PDFBased on multidisciplinary data, including seismological and geodetic observations, as well as seismic reflection profiles and gravity maps, we analysed the pattern of crustal deformation and active tectonics in the Sicily Channel, a key observation point to unravel the complex interaction between two major plates, Nubia and Eurasia, in the Mediterranean Sea. Our data highlight the presence of an active ~ 220-km-long complex lithospheric fault system (here named the Lampedusa-Sciacca Shear Zone), approximately oriented N-S, crossing the study area with left-lateral strike-slip deformations, active volcanism and high heat flow. We suggest that this shear zone represents the most active tectonic domain in the area, while the NW-SE elongated rifting pattern, considered the first order tectonic feature, appears currently inactive and sealed by undeformed recent (Lower Pleistocene?) deposits.
View Article and Find Full Text PDFThe Sea of Galilee in northeast Israel is a freshwater lake filling a morphological depression along the Dead Sea Fault. It is located in a tectonically complex area, where a N-S main fault system intersects secondary fault patterns non-univocally interpreted by previous reconstructions. A set of multiscale geophysical, geochemical and seismological data, reprocessed or newly collected, was analysed to unravel the interplay between shallow tectonic deformations and geodynamic processes.
View Article and Find Full Text PDFMicrofluidics techniques can be used to process a wide range of biomaterials, from synthetic to natural origin ones. This chapter describes microfluidic processing of biomaterials, mainly polymeric materials of natural origin, focusing on water-soluble polymers that form non-flowing phases after crosslinking. Some polysaccharides and proteins, including agarose, alginate, chitosan, gellan gum, hyaluronic acid, collagen, gelatin, and silk fibroin are emphasized deu to their relevance in the field.
View Article and Find Full Text PDFFiber-based techniques hold great potential toward the development of structures that mimic the architecture of fibrous tissues, such as tendon. Microfluidics and polyelectrolyte complexation are among the most widely used techniques for the fabrication of fibrous structures. In this work, we combined both techniques to generate hydrogel fibers with a fibrillar-like structure.
View Article and Find Full Text PDFThe scientific development of 3D bioprinting is rapidly advancing. This innovative technology involves many ethical and regulatory issues, including theoretical, source, transplantation and enhancement, animal welfare, economic, safety and information arguments. 3D bioprinting technology requires an adequate bioethical debate in order to develop regulations in the interest both of public health and the development of research.
View Article and Find Full Text PDFThe boundary between the African and Arabian plates in the Southern Red Sea region is displaced inland in the northern Afar rift, where it is marked by the Red Sea-parallel Erta Ale, Alaita, and Tat Ali volcanic ridges. The Erta Ale is offset by about 20 and 40 km from the two en echelon ridges to the south. The offset area is highly seismic and marked by a depression filled by lake Afrera, a saline body of water fed by hydrothermal springs.
View Article and Find Full Text PDFNew derivatives of gellan gum (GG) were prepared by covalent attachment of octadecylamine (C-NH) to polysaccharide backbone via amide linkage by using bis(4-nitrophenyl) carbonate (4-NPBC) as a coupling agent. The effect of the alkyl chain grafted onto hydrophilic backbone of high molecular weight GG was investigated in terms of physicochemical properties and ability of new derivatives to form hydrogels. A series of hydrogels was obtained in solutions with different kind and concentration of ions and their stability and mechanical properties were evaluated.
View Article and Find Full Text PDFUnlabelled: Methacrylated gellan-gum (GG-MA) alone and combined with collagen type I (Coll) is suggested here for the first time as a cell-laden injectable biomaterial for bone regeneration. On-chip high-throughput studies allowed rapidly assessing the suitability of 15 biomaterials/media combinations for the osteodifferentiation of human adipose stem cells (hASCs). Hydrogels composed solely of GG-MA (GG100:0Coll) led hASCs from three different donors into the osteogenic lineage after 21days of cell culture, in the absence of any osteogenic or osteoconductive factors.
View Article and Find Full Text PDFIn this article, we propose a systemic approach to investigate the impact of electrohydrodynamic jetting (EHDJ) encapsulation on viability, proliferation, and functionality of the encapsulated cells. EHDJ consists in applying a high-voltage electrical field between a target substrate and a jetting needle, which is fed with a suspension of cells in a polymeric solution undergoing a sol-gel transition upon contact with the target. The viability, proliferation, and self-assembling ability of SHSY5Y human neuroblastoma cell line encapsulated in 2% alginate microbeads were analyzed by confocal microscopy and DNA quantification assays.
View Article and Find Full Text PDFThe encapsulation of living mammalian cells within a semi-permeable hydrogel matrix is an attractive procedure for many biomedical and biotechnological applications, such as xenotransplantation, maintenance of stem cell phenotype and bioprinting of three-dimensional scaffolds for tissue engineering and regenerative medicine. In this review, we focus on naturally derived polymers that can form hydrogels under mild conditions and that are thus capable of entrapping cells within controlled volumes. Our emphasis will be on polysaccharides and proteins, including agarose, alginate, carrageenan, chitosan, gellan gum, hyaluronic acid, collagen, elastin, gelatin, fibrin and silk fibroin.
View Article and Find Full Text PDFTissue Eng Part C Methods
February 2015
In this work we present a bioprinting technique that exploits the electrohydrodynamic process to obtain a jet of liquid alginate beads containing cells. A printer is used to microfabricate hydrogels block by block following a bottom-up approach. Alginate beads constitute the building blocks of the microfabricated structures.
View Article and Find Full Text PDFHistorian Ammianus Marcellinus documented the devastating effects of a tsunami hitting Alexandria, Egypt, on July 21, AD 365. "The solidity of the earth was made to shake … and the sea was driven away. The waters returning when least expected killed many thousands by drowning.
View Article and Find Full Text PDFA 20-Myr record of creation of oceanic lithosphere is exposed along a segment of the central Mid-Atlantic Ridge on an uplifted sliver of lithosphere. The degree of melting of the mantle that is upwelling below the ridge, estimated from the chemistry of the exposed mantle rocks, as well as crustal thickness inferred from gravity measurements, show oscillations of approximately 3-4 Myr superimposed on a longer-term steady increase with time. The time lag between oscillations of mantle melting and crustal thickness indicates that the mantle is upwelling at an average rate of approximately 25 mm x yr(-1), but this appears to vary through time.
View Article and Find Full Text PDF