Publications by authors named "Luca Formenti"

Background: Simulation has been recognized as a shift in healthcare education that can improve skills and patient safety and outcomes. High-fidelity simulation of critical medical situations can be a source of stress among participants that can interfere with students' abilities leading to unexpected emotional responses. The aim of this study is to determine if two simulation methods, high-fidelity (HF) and procedural simulation (PS), may be associated with stress responses at a self-perceived and biological level (salivary cortisol variations), and to compare stress levels of the two different simulation method.

View Article and Find Full Text PDF

Industrial fermentation processes are increasingly popular, and are considered an important technological asset for reducing our dependence on chemicals and products produced from fossil fuels. However, despite their increasing popularity, fermentation processes have not yet reached the same maturity as traditional chemical processes, particularly when it comes to using engineering tools such as mathematical models and optimization techniques. This perspective starts with a brief overview of these engineering tools.

View Article and Find Full Text PDF

Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report the engineering of Escherichia coli genes encoding the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway into the genome of Saccharomyces cerevisiae and the characterization of intermediate metabolites synthesized by the MEP pathway in yeast. Our UPLC-MS analysis of the MEP pathway metabolites from engineered yeast showed that the pathway is active until the synthesis of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate, but appears to lack functionality of the last two steps of the MEP pathway, catalyzed by the [4Fe-4S] iron sulfur cluster proteins encoded by ispG and ispH.

View Article and Find Full Text PDF

The use of statins is well established in human therapy, and model organisms such as Saccharomyces cerevisiae are commonly used in studies of drug action at molecular and cellular levels. The investigation of the resistance mechanisms towards statins may suggest new approaches to improve therapy based on the use of statins. We investigated the susceptibility to lovastatin of S.

View Article and Find Full Text PDF

A eukaryotic mevalonate pathway transferred and expressed in Escherichia coli, and a mammalian hydrocortisone biosynthetic pathway rebuilt in Saccharomyces cerevisiae are examples showing that transferring metabolic pathways from one organism to another can have a powerful impact on cell properties. In this study, we reconstructed the E. coli isoprenoid biosynthetic pathway in S.

View Article and Find Full Text PDF