Publications by authors named "Luca Flamigni"

Asymmetrical flow field-flow fractionation (AF4) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) has been widely used to characterize metal containing particles. This study demonstrates the advantages of coupling AF4 with ICP-time-of-flight mass spectrometry (ICP-TOFMS) in standard and single particle modes to determine size distribution, elemental composition, and number concentration of composite particles. The coupled system was used to characterize two complex particle mixtures.

View Article and Find Full Text PDF

Sanitary sewer overflows (SSOs) are a common problem across the United States. An estimated 23,000-75,000 SSOs occurred annually in 2004 discharging between 11 and 38 billion liters of untreated wastewater to receiving waters. SSOs release many contaminants, including engineered nanomaterials (ENMs), to receiving water bodies.

View Article and Find Full Text PDF

Inductively coupled plasma mass spectrometry is increasingly used for non-traditional applications such as the analysis of solids at high spatial resolution when combined with laser ablation or the analysis of engineered nanoparticles. This report highlights recent projects and discusses the potentials and limitations these techniques offer. High-resolution laser ablation instrumentation allows element imaging at the μm-scale and can, therefore, be applied to, e.

View Article and Find Full Text PDF

More than 100 million tonnes of municipal solid waste are incinerated worldwide every year. However, little is known about the fate of nanomaterials during incineration, even though the presence of engineered nanoparticles in waste is expected to grow. Here, we show that cerium oxide nanoparticles introduced into a full-scale waste incineration plant bind loosely to solid residues from the combustion process and can be efficiently removed from flue gas using current filter technology.

View Article and Find Full Text PDF

To achieve separation of isobaric interferences and minimization of matrix related interferences for laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) electrothermal heating of laser generated aerosols was investigated by analyzing a range of solid samples: NIST SRM 610, MBH B26, BAM M381, BAM M601 and Tantalum. ICPMS measurements showed that individual elements can be removed from the laser-generated aerosol at characteristic temperatures for different solid materials. Signal reduction as high as 3 orders of magnitude were achieved for volatile elements, such as Ag and Cd when heating laser-generated aerosol of NIST SRM 610 silicate glass.

View Article and Find Full Text PDF