Molecular communication allows information to be exchanged in environments where electromagnetic waves are prohibited. It employs the exchange of information particles travelling through fluids. The transmitter releases several chemical messengers inside the communication channel, encoding the message it intends to send in an appropriate way.
View Article and Find Full Text PDFMolecular communication (MoCo) is a new paradigm of bio-inspired communication in which the transport of information occurs through information particles instead of electromagnetic waves. Herein, the enormous potential of nanoparticles in this field is highlighted. The MoCo concept has been extensively modelled both theoretically and computationally within the scientific community, mainly in the field of engineering.
View Article and Find Full Text PDFA prototypal molecular Internet of things (IoT) network is reported. Starting from the design of the communication architecture, we have theoretically simulated molecular messenger information exchange by means of fluid-based advection. The objective was to determine the key experimental parameters affecting information storage and transfer efficiency.
View Article and Find Full Text PDFArtificial chemical communication is an emerging field of study driven by the need of exchanging information in delicate environments where standard procedures based on electromagnetic waves cannot be used. A non-synchronized artificial chemical communication system, based on a new modulation technique, namely reaction shift keying (RSK), is presented. The RSK implies that the quenchers are injected into the transmitter, the chemical messenger reacts and a chemically modified messenger travels towards the receiver.
View Article and Find Full Text PDFHerein, supramolecular carbon nanoparticle aggregates were obtained via covalent functionalization of the shell of nanoparticles with triazine and subsequent hydrogen bonding reticulation upon the addition of naphthalene diimide. The resulting reticulated nanoparticles maintained the optical properties required for artificial chemical communication but exhibited a reduced diffusion coefficient, enabling sharper and more intense molecular bit capabilities when employed as chemical messengers. As a result, they are ideal candidates for the transport of information along extended fluid paths.
View Article and Find Full Text PDF