The modulation of protein function via designed small molecules is providing new opportunities in chemical biology and medicinal chemistry. While drugs have traditionally been developed to block enzymatic activities through active site occupation, a growing number of strategies now aim to control protein functions in an allosteric fashion, allowing for the tuning of a target's activation or deactivation via the modulation of the populations of conformational ensembles that underlie its function. In the context of the discovery of new active leads, it would be very useful to generate hypotheses for the functional impact of new ligands.
View Article and Find Full Text PDFThis work introduces the first atrial-specific in-silico human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) model, based on a set of phenotype-specific I,I and I membrane currents. This model is built on novel in-vitro experimental data recently published by some of the co-authors to simulate the paced action potential of matured atrial-like hiPSC-CMs. The model consists of a system of stiff ordinary differential equations depending on several parameters, which have been tuned by automatic optimization techniques to closely match selected experimental biomarkers.
View Article and Find Full Text PDFLong QT Syndrome type 8 (LQT8) is a cardiac arrhythmic disorder associated with Timothy Syndrome, stemming from mutations in the CACNA1C gene, particularly the G406R mutation. While prior studies hint at CACNA1C mutations' role in ventricular arrhythmia genesis, the mechanisms, especially in G406R presence, are not fully understood. This computational study explores how the G406R mutation, causing increased transmural dispersion of repolarization, induces and sustains reentrant ventricular arrhythmias.
View Article and Find Full Text PDFThe Brugada syndrome (BrS) is a cardiac arrhythmic disorder responsible for sudden cardiac death associated with the onset of ventricular arrhythmias, such as reentrant ventricular tachycardia and fibrillation. The mechanisms which lead to the onset of such electrical disorders in patients affected by BrS are not completely understood, yet. The aim of the present study is to investigate by means of numerical simulations the electrophysiological mechanisms at the basis of the morphology of electrocardiogram (ECG) and the onset of reentry associated with BrS.
View Article and Find Full Text PDFIn patients with healed myocardial infarction, the left ventricular ejection fraction is characterized by low sensitivity and specificity in the prediction of future malignant arrhythmias. Thus, there is the need for new parameters in daily practice to perform arrhythmic risk stratification. The aim of this study is to identify some features of proarrhythmic geometric configurations of scars and border zones (BZ), by means of numerical simulations based on left ventricular models derived from post myocardial infarction patients.
View Article and Find Full Text PDFIn this study, the cardiac electro-mechanical model in a deforming domain is taken with the addition of mechanical feedback and stretch-activated channel current coupled with the ten Tusscher human ventricular cell level model that results in a coupled PDE-ODE system. The existence and uniqueness of such a coupled system in a deforming domain is proved. At first, the existence of a solution is proved in the deformed domain.
View Article and Find Full Text PDFAllosteric molecules provide a powerful means to modulate protein function. However, the effect of such ligands on distal orthosteric sites cannot be easily described by classical docking methods. Here, we applied machine learning (ML) approaches to expose the links between local dynamic patterns and different degrees of allosteric inhibition of the ATPase function in the molecular chaperone TRAP1.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
November 2021
Recent advances in the development of noninvasive cardiac imaging technologies have made it possible to measure longitudinal and circumferential strains at a high spatial resolution also at intramural level. Local mechanical activation times derived from these strains can be used as noninvasive estimates of electrical activation, in order to determine, eg, the origin of premature ectopic beats during focal arrhythmias or the pathway of reentrant circuits. The aim of this work is to assess the reliability of mechanical activation time markers derived from longitudinal and circumferential strains, denoted by AT and AT , respectively, by means of three-dimensional cardiac electromechanical simulations.
View Article and Find Full Text PDFIn this work, a human ventricular model (ten Tusscher and Panfilov model) coupled with the tissue level monodomain model is used to analyze the influence of multiple myocardial ischemia on the human cardiac tissue. The existence and uniqueness of the ischemic model comprising the monodomain model with a discontinuous ionic model for the human cardiac tissue is discussed. The coupled system of partial differential equation and ordinary differential equations are solved numerically using [Formula: see text] finite elements in space and Backward Euler finite difference scheme in time.
View Article and Find Full Text PDFWe introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing) architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1) the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2) the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3) the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4) the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements.
View Article and Find Full Text PDFAims: Cardiac unipolar electrode stimulations induce a particular structure of the transmembrane potential distribution (Vm), called virtual electrode polarization (VEP), which plays an important role in the mechanisms of cardiac excitation, reentry induction, and ventricular defibrillation. Recent experimental studies, based on the optical mapping techniques, have shown that premature stimulations also induce significant changes in the intracellular calcium (Cai) spatial distribution. The aim of this work is to investigate and compare by means of numerical simulations the morphology of the Vm and Cai patterns, generated by applying an S1-S2 stimulation protocol with a premature S2 anodal pulse.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
July 2015
A model for the active deformation of cardiac tissue considering orthotropic constitutive laws is introduced and studied. In particular, the passive mechanical properties of the myocardium are described by the Holzapfel-Ogden relation, whereas the activation model is based on the concept of active strain. There, an incompatible intermediate configuration is considered, which entails a multiplicative decomposition between active and passive deformation gradients.
View Article and Find Full Text PDFBackground: There are no published data showing the three-dimensional sequence of repolarization and the associated potential fields in the ventricles. Knowledge of the sequence of repolarization has medical relevance because high spatial dispersion of recovery times and action potential durations favors cardiac arrhythmias. In this study we describe measured and simulated 3-D excitation and recovery sequences and activation-recovery intervals (ARIs) (measured) or action potential durations (APDs) (simulated) in the ventricular walls.
View Article and Find Full Text PDF