Publications by authors named "Luca Deseri"

In this work, starting from an approach previously proposed by the Authors, we put forward an extension to the large deformation regime of the dimensionally-reduced formulation for peridynamic thin plates, including both hyperelasticity and fracture. In particular, the model, validated against numerical simulations, addresses the problem of the peeling in nonlocal thin films, which when attached to a soft substrate highlights how nonlocality of the peeled-off layer might greatly influence the whole structural response and induce some unforeseen mechanical behaviours that could be useful for engineering applications. Through a key benchmark example, we in fact demonstrate that de-localization of damage and less destructive failure modes take place, these effects suggesting the possibility of  conceiving specific networks of nonlocal interactions between material particles, corresponding to lattice-equivalent structure of the nonlocal model treated, of interest in designing new material systems and interfaces with enhanced toughness and adhesive properties.

View Article and Find Full Text PDF

Cell membranes, mediator of many biological mechanisms from adhesion and metabolism up to mutation and infection, are highly dynamic and heterogeneous environments exhibiting a strong coupling between biochemical events and structural re-organisation. This involves conformational changes induced, at lower scales, by lipid order transitions and by the micro-mechanical interplay of lipids with transmembrane proteins and molecular diffusion. Particular attention is focused on lipid rafts, ordered lipid microdomains rich of signalling proteins, that co-localise to enhance substance trafficking and activate different intracellular biochemical pathways.

View Article and Find Full Text PDF

Langmuir monolayers at gas/liquid interfaces provide a rich framework to investigate the interplay between multiscale geometry and mechanics. Monolayer collapse is investigated at a topological and geometric level by building a scale space M from experimental imaging data. We present a general lipid monolayer collapse phase diagram, which shows that wrinkling, folding, crumpling, shear banding, and vesiculation are a continuous set of mechanical states that can be approached by either tuning monolayer composition or temperature.

View Article and Find Full Text PDF

Wrinkling is a ubiquitous surface phenomenon in many biological tissues and is believed to play an important role in arterial health. As arteries are highly nonlinear, anisotropic, multilayered composite systems, it is necessary to investigate wrinkling incorporating these material characteristics. Several studies have examined surface wrinkling mechanisms with nonlinear isotropic material relationships.

View Article and Find Full Text PDF

Clustering of ligand-binding receptors of different types on thickened isles of the cell membrane, namely lipid rafts, is an experimentally observed phenomenon. Although its influence on cell's response is deeply investigated, the role of the coupling between mechanical processes and multiphysics involving the active receptors and the surrounding lipid membrane during ligand-binding has not yet been understood. Specifically, the focus of this work is on (GPCRs), the widest group of transmembrane proteins in animals, which regulate specific cell processes through chemical signalling pathways involving a synergistic balance between the (cAMP) produced by active GPCRs in the intracellular environment and its efflux, mediated by the (MRPs) transporters.

View Article and Find Full Text PDF

Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces.

View Article and Find Full Text PDF

In this paper, the authors introduce a hierarchic fractal model to describe bone hereditariness. Indeed, experimental data of stress relaxation or creep functions obtained by compressive/tensile tests have been proved to be fit by power law with real exponent 0 ⩽ β ⩽1. The rheological behavior of the material has therefore been obtained, using the Boltzmann-Volterra superposition principle, in terms of real order integrals and derivatives (fractional-order calculus).

View Article and Find Full Text PDF

In this work, some implications of a recent model for the mechanical behavior of biological membranes (Deseri et al. in Continuum Mech Thermodyn 20(5):255-273, 2008) are exploited by means of a prototypical one-dimensional problem. We show that the knowledge of the membrane stretching elasticity permits to establish a precise connection among surface tension, bending rigidities and line tension during phase transition phenomena.

View Article and Find Full Text PDF